
Set up Elyra with Data-Science Pipeline

Note: As Elyra inclusion in the notebook image is still awork in progress
And ODH-Dashboard support is yet to be worked on, a lot of the setup below would be
automated, and users wouldn’t go over the same steps.
This is major just to showcase a connection of notebooks with the data-science pipeline.

￼

Pre-requisite:
- Openshift cluster with openshift-pipeline installed

Steps:
1. Setup data-science-pipeline in the cluster.

a. (Only if DSPO is not installed via RHODS already)
As DS pipeline operator is yet to be part of RHODS.
One can install the DSPO with the help of kfdef:
apiVersion: kfdef.apps.kubeflow.org/v1
kind: KfDef

metadata:

name: odh-core

spec:

applications:

- kustomizeConfig:

repoRef:

name: manifests

path: odh-common

name: odh-common

- kustomizeConfig:

parameters:

- name: namespace

value: openshift-operators

repoRef:

name: manifests

path: openshift-pipelines/cluster

name: openshift-pipelines

- kustomizeConfig:

repoRef:

name: app



path: config

name: data-science-pipelines-operator

repos:

- name: manifests

uri: https://github.com/opendatahub-io/odh-manifests/tarball/master

- name: app

uri: https://github.com/opendatahub-io/data-science-pipelines-operator/tarball/main

version: master

b. Once data-science pipeline operator pods are up. An instance of a data-science
pipeline can be set up.(all this would be later done through odh-dashboard in
future)
For now:
Create a new namespace:`oc new-project dspa`
Apply the CR:
apiVersion: datasciencepipelinesapplications.opendatahub.io/v1alpha1

kind: DataSciencePipelinesApplication

metadata:

name: sample

spec:

objectStorage:

minio:

image:

'quay.io/opendatahub/minio:RELEASE.2019-08-14T20-37-41Z-license-compliance'

mlpipelineUI:

image: 'quay.io/opendatahub/odh-ml-pipelines-frontend-container:beta-ui'

c. Once everything is set up, we require following information for elyra pipelines
i. DS pipeline serve api : check for route on dspa namespace
ii. Minio storage details: check for secret named

ml-pipeline-minio-artifact
d. Now that ds-pipeline is setup, time to setup elyra notebook
e. On the redhat-ods-application namespace,

Edit the imagestream `s2i-generic-data-science-notebook`



f.

Add additional tag:
- name: py3.8-v2

annotations:

opendatahub.io/notebook-python-dependencies: >-

[{"name":"Boto3","version":"1.17"},{"name":"Kafka-Python","version":"2.0"},{"name":"Matplotlib","version":"3.4"},{

"name":"Numpy","version":"1.19"},{"name":"Pandas","version":"1.2"},{"name":"Scikit-learn","version":"0.24"},{"nam

e":"Scipy","version":"1.6"}]

opendatahub.io/notebook-software: '[{"name":"Python","version":"v3.8"}]'

openshift.io/imported-from: quay.io/opendatahub/workbench-images

from:

kind: DockerImage

name: >-

quay.io/opendatahub/workbench-images:jupyter-datascience-ubi8-python-3.8-20230407-e95157b

generation: 8

importPolicy: {}

referencePolicy:

type: Source



Once the changes are saved, Launch the notebook server selecting “Standard Data Science
py3.8-v2”

● Once the server is started, we need to configure data -science-pipeline with notebook
manually(Note: this would be automated by odh-dashboard)
Head to runtimes configure:
Fill the runtime configuration details:

1. kubeflow pipeline API endpoint: ds pipeline server api route
2. Authentication type: Existing_bearer_token
3. Kubeflow Pipelines API Endpoint Password Or Token: user bearer token of openshift

Leave all the other options black
1. For cloud object storage:

a. Cloud Object Storage Endpoint:
http://minio-sample.dspa.svc.cluster.local:9000

b. Cloud Object Storage Bucket Name: test
c. Cloud Object Storage Credentials Secret: <access-token>

http://minio-sample.dspa.svc.cluster.local:9000


d. Cloud Object Storage Password: <secret-access-token>

Now we are set up.
Elyra has examples to run through the setup.
Follow the tutorial:
https://github.com/elyra-ai/examples/tree/main/pipelines/run-generic-pipelines-on-ku
beflow-pipelines

https://github.com/elyra-ai/examples/tree/main/pipelines/run-generic-pipelines-on-kubeflow-pipelines
https://github.com/elyra-ai/examples/tree/main/pipelines/run-generic-pipelines-on-kubeflow-pipelines

