
Red Hat 3scale API Management 2.6

Administering the API Gateway

Intermediate to advanced goals to manage your installation.

Last Updated: 2019-09-10

Red Hat 3scale API Management 2.6 Administering the API Gateway

Intermediate to advanced goals to manage your installation.

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information regarding configuration tasks, which can be performed after
the basic installation.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. OPERATING APICAST
1.1. MAPPING RULES

1.1.1. Matching of mapping rules
1.1.2. Mapping rules workflow

1.2. HOST HEADER
1.3. PRODUCTION DEPLOYMENT
1.4. PUBLIC BASE URL
1.5. PROTECTING YOUR API BACKEND
1.6. USING APICAST WITH PRIVATE APIS
1.7. CONFIGURING APICAST WITH OPENTRACING

1.7.1. Prerequisites
1.7.2. Procedure
1.7.3. Additional information
1.7.4. Installing Jaeger on your OpenShift instance

CHAPTER 2. OPERATING DOCKER-CONTAINERIZED ENVIRONMENTS
2.1. TROUBLESHOOTING APICAST ON THE DOCKER-CONTAINERIZED ENVIRONMENT

2.1.1. Cannot connect to the Docker daemon error
2.1.2. Basic Docker command-line interface commands

CHAPTER 3. ADVANCED APICAST CONFIGURATION
3.1. DEFINE A SECRET TOKEN
3.2. CREDENTIALS
3.3. CONFIGURING ERROR MESSAGES
3.4. CONFIGURATION HISTORY
3.5. DEBUGGING
3.6. PATH ROUTING

CHAPTER 4. APICAST POLICIES
4.1. APICAST STANDARD POLICIES

4.1.1. 3scale Auth Caching policy
4.1.2. 3scale Batcher policy
4.1.3. Anonymous Access policy
4.1.4. CORS Request Handling policy
4.1.5. Echo policy
4.1.6. Edge Limiting policy

4.1.6.1. Types of limits
4.1.6.2. Limit definition
4.1.6.3. Liquid templating
4.1.6.4. Applying conditions
4.1.6.5. Configuring the store
4.1.6.6. Error handling

4.1.7. Header Modification policy
4.1.8. IP Check policy
4.1.9. JWT Claim Check policy

4.1.9.1. About JWT Claim Check policy
4.1.9.2. Configuring JWT Claim Check policy in your policy chain

4.1.9.2.1. Prerequisites:
4.1.9.2.2. Configuring the policy

4.1.10. Liquid Context Debug policy

5

6
6
6
7
8
8
8
9
9
9
9
9

10
10

12
12
12
12

13
13
13
14
15
15
16

17
17
18
19

20
21
23
23
24
24
25
25
26
26
27
28
29
29
29
29
30
30

Table of Contents

1

. .

4.1.11. Logging policy
4.1.12. OAuth 2.0 Token Introspection policy
4.1.13. Prometheus metrics
4.1.14. Referrer policy
4.1.15. Retry policy
4.1.16. RH-SSO/Keycloak Role Check policy
4.1.17. Routing policy

4.1.17.1. Routing rules
4.1.17.2. Request path rule
4.1.17.3. Header rule
4.1.17.4. Query argument rule
4.1.17.5. JWT claim rule
4.1.17.6. Multiple operations rule
4.1.17.7. Combining rules
4.1.17.8. Catch-all rules
4.1.17.9. Supported operations
4.1.17.10. Liquid templating
4.1.17.11. Set the host used in the Host header

4.1.18. SOAP policy
4.1.19. TLS Client Certificate Validation policy

4.1.19.1. About TLS Client Certificate Validation policy
4.1.19.2. Setting up APIcast to work with TLS Client Certificate Validation

4.1.19.2.1. Prerequisites:
4.1.19.2.2. Setting up APIcast to work with the policy

4.1.19.3. Configuring TLS Client Certificate Validation in your policy chain
4.1.19.3.1. Prerequisites
4.1.19.3.2. Configuring the policy

4.1.19.4. Verifying functionality of the TLS Client Certificate Validation policy
4.1.19.4.1. Prerequisites:
4.1.19.4.2. Verifying policy functionality

4.1.19.5. Removing a certificate from the whitelist
4.1.19.5.1. Prerequisites
4.1.19.5.2. Removing a certificate

4.1.19.6. Reference material
4.1.20. Upstream policy
4.1.21. Upstream Connection policy

4.1.21.1. About Upstream Connection policy
4.1.21.2. Configuring Upstream Connection in your policy chain

4.1.21.2.1. Prerequisites:
4.1.21.2.2. Configuring the policy

4.1.22. URL Rewriting policy
4.1.22.1. Commands for rewriting the path
4.1.22.2. Commands for rewriting the query string

4.1.23. URL Rewriting with Captures policy
4.2. ENABLING A STANDARD POLICY
4.3. CREATING CUSTOM APICAST POLICIES
4.4. ADDING CUSTOM POLICIES TO APICAST

4.4.1. Adding custom policies to the built-in APIcast
4.4.2. Adding custom policies to APIcast on another OpenShift Container Platform

4.5. CREATING A POLICY CHAIN IN 3SCALE
4.6. CREATING A POLICY CHAIN JSON CONFIGURATION FILE

CHAPTER 5. INTEGRATING A POLICY CHAIN WITH APICAST NATIVE DEPLOYMENTS

31
31

35
37
37
38
40
40
40
41
41

42
42
44
44
45
46
46
47
48
48
48
48
48
49
49
49
50
50
50
50
50
51
51
51
52
52
52
52
52
52
53
53
55
56
56
56
57
58
59
60

62

Red Hat 3scale API Management 2.6 Administering the API Gateway

2

. .

. .

5.1. USING VARIABLES AND FILTERS IN POLICIES

CHAPTER 6. APICAST ENVIRONMENT VARIABLES
APICAST_BACKEND_CACHE_HANDLER
APICAST_CONFIGURATION_CACHE
APICAST_CONFIGURATION_LOADER
APICAST_CUSTOM_CONFIG
APICAST_ENVIRONMENT
APICAST_EXTENDED_METRICS
APICAST_LOG_FILE
APICAST_LOG_LEVEL
APICAST_ACCESS_LOG_FILE
APICAST_OIDC_LOG_LEVEL
APICAST_MANAGEMENT_API
APICAST_MODULE
APICAST_PATH_ROUTING
APICAST_POLICY_LOAD_PATH
APICAST_PROXY_HTTPS_CERTIFICATE_KEY
APICAST_PROXY_HTTPS_CERTIFICATE
APICAST_PROXY_HTTPS_PASSWORD_FILE
APICAST_PROXY_HTTPS_SESSION_REUSE
APICAST_HTTPS_VERIFY_DEPTH
APICAST_REPORTING_THREADS
APICAST_RESPONSE_CODES
APICAST_SERVICES_LIST_URL
APICAST_SERVICES_LIST
APICAST_UPSTREAM_RETRY_CASES
APICAST_SERVICE_${ID}_CONFIGURATION_VERSION
APICAST_WORKERS
BACKEND_ENDPOINT_OVERRIDE
OPENSSL_VERIFY
RESOLVER
THREESCALE_CONFIG_FILE
THREESCALE_DEPLOYMENT_ENV
THREESCALE_PORTAL_ENDPOINT
OPENTRACING_TRACER
OPENTRACING_CONFIG
OPENTRACING_HEADER_FORWARD
APICAST_HTTPS_PORT
APICAST_HTTPS_CERTIFICATE
APICAST_HTTPS_CERTIFICATE_KEY
all_proxy, ALL_PROXY
http_proxy, HTTP_PROXY
https_proxy, HTTPS_PROXY
no_proxy, NO_PROXY

CHAPTER 7. CONFIGURING APICAST FOR BETTER PERFORMANCE
7.1. GENERAL GUIDELINES
7.2. DEFAULT CACHING
7.3. ASYNCHRONOUS REPORTING THREADS
7.4. 3SCALE BATCHER POLICY

62

64
65
65
66
66
66
66
66
66
67
67
67
67
67
67
67
68
68
68
68
68
69
69
69
69
70
70
70
70
70
70
71
71
71
71
71
71
72
72
72
72
72
72

73
73
73
75
76

Table of Contents

3

Red Hat 3scale API Management 2.6 Administering the API Gateway

4

PREFACE
This guide will help you to apply intermediate to advanced configuration features to your 3scale
installation. For basic details regarding installation, refer to Installing 3scale.

PREFACE

5

CHAPTER 1. OPERATING APICAST
This section describes the concepts to consider when working with advanced APIcast configurations.

1.1. MAPPING RULES

Mapping rules define the metrics or methods that you want to report depending on the requests to your
API. The following is an example mapping rule:

This rule means that any GET requests that start with / will increment the metric hits by 1. This rule will
match any request to your API. But most likely, you will change this rule because it is too generic.

The following rules for the Echo API show more specific examples:

1.1.1. Matching of mapping rules

The matching of mapping rules is performed by prefix and can be arbitrarily complex (the notation
follows OpenAPI and ActiveDocs specifications):

A mapping rule must start with a forward slash (/).

You can perform a match on the path over a literal string (for example, /hello).

Mapping rules can include parameters on the query string or in the body (for example, /{word}?
value={value}). APIcast fetches the parameters in the following ways:

GET method: From the query string.

POST, DELETE, or PUT method: From the body.

Mapping rules can contain named wildcards (for example, /{word}). This rule will match anything
in the placeholder {word}, making requests like /morning match the rule. Wildcards can appear
between slashes or between slash and dot. Parameters can also include wildcards.

By default, all mapping rules are evaluated from first to last, according to the sort you specified.
If you add a rule /v1, it will be matched for requests whose paths start with /v1 (for example,
/v1/word or /v1/sentence).

You can add a dollar sign ($) to the end of a pattern to specify exact matching. For example,
/v1/word$ will only match /v1/word requests, and will not match /v1/word/hello requests. For

Red Hat 3scale API Management 2.6 Administering the API Gateway

6

exact matching, you must also ensure that the default mapping rule that matches everything (/)
has been disabled.

More than one mapping rule can match the request path, but if none matches, the request is
discarded with an HTTP 404 status code.

1.1.2. Mapping rules workflow

Mapping rules have the following workflow:

You can define a new mapping rule (see Add mapping rules).

Mapping rules will be grayed out on the next reload to prevent accidental modifications.

To edit an existing mapping rule, you must enable it first by clicking the pencil icon on the right.

To delete a rule, click the trash icon.

All modifications and deletions are saved when you click Update & Test Staging Configuration.

Add mapping rules

To add a new mapping rule, perform the following steps:

1. Click Add Mapping Rule.

2. Specify the following settings:

Verb: The HTTP request verb (GET, POST, DELETE, or PUT).

Pattern: The pattern to match (for example, /hello).

+: The metric increment number (for example, 1).

Metric (or method): The metric or method name (for example, gethello).

3. Click Update & Test Staging Configuration to apply the changes.

Stop other mapping rules

To stop processing other mapping rules, you can select Last?. For example, if you have the following
mapping rules defined in API Integration Settings and you have different metrics associated with each
rule:

(get) /path/to/example/search
(get) /path/to/example/{id}

When calling with (get) /path/to/example/search, APIcast will stop processing the remaining mapping
rules and incrementing their metrics after the rule is matched.

Sort mapping rules

To sort mapping rules, you can drag and drop them using the green arrows for each mapping rule next to
the Last? setting. The specified sort is saved in the database and is kept in the proxy configuration after
you click Update & test in Staging Environment.

For more configuration options, see APIcast advanced configuration .

CHAPTER 1. OPERATING APICAST

7

1.2. HOST HEADER

This option is only needed for those API backends that reject traffic unless the Host header matches
the expected one. In these cases, having a gateway in front of your API backend will cause problems
since the Host will be the one of the gateway, e.g. xxx-yyy.staging.apicast.io

To avoid this issue you can define the host your API backend expects in the Host Header field in the
Authentication Settings, and the hosted APIcast instance will rewrite the host.

1.3. PRODUCTION DEPLOYMENT

Once you have configured your API integration and verified it is working in the Staging environment, you
can go ahead with one of the APIcast production deployments.

At the bottom of the Integration page you will find the Production section. You will find two fields here:
the Private Base URL, which will be the same as you configured in the Staging section, and the Public
Base URL.

1.4. PUBLIC BASE URL

The Public Base URL is the URL, which your developers will use to make requests to your API,
protected by 3scale. This will be the URL of your APIcast instance.

If you are using one of the Self-managed deployment options, you can choose your own Public Base
URL for each one of the environments provided (staging and production), on a domain name you are
managing. Note that this URL should be different from the one of your API backend, and could be
something like https://api.yourdomain.com:443, where yourdomain.com is the domain that belongs
to you. After setting the Public Base URL make sure you save the changes and, if necessary, promote
the changes in staging to production.

Please note that APIcast will only accept calls to the hostname which is specified in the Public Base URL.
For example, for the Echo API example used above, if we specify https://echo-api.3scale.net:443 as the
Public Base URL, the correct call would be be:

curl "https://echo-api.3scale.net:443/hello?user_key=YOUR_USER_KEY"

In case you don’t yet have a public domain for your API, you can also use the APIcast IP in the requests,
but you still need to specify a value in the Public Base URL field (even if the domain is not real), and in
this case make sure you provide the host in the Host header, for example:

curl "http://192.0.2.12:80/hello?user_key=YOUR_USER_KEY" -H "Host: echo-api.3scale.net"

If you are deploying on local machine, you can also just use "localhost" as the domain, so the Public Base
URL will look like http://localhost:80, and then you can make requests like this:

Red Hat 3scale API Management 2.6 Administering the API Gateway

8

https://api.yourdomain.com:443
https://echo-api.3scale.net:443
http://localhost:80

curl "http://localhost:80/hello?user_key=YOUR_USER_KEY"

In case you have multiple API services, you will need to set this Public Base URL appropriately for each
service. APIcast will route the requests based on the hostname.

1.5. PROTECTING YOUR API BACKEND

Once you have APIcast working in production, you might want to restrict direct access to your API
backend without credentials. The easiest way to do this is by using the Secret Token set by APIcast.
Please refer to the Advanced APIcast configuration for information on how to set it up.

1.6. USING APICAST WITH PRIVATE APIS

With APIcast it is possible to protect the APIs which are not publicly accessible on the Internet. The
requirements that must be met are:

Self-managed APIcast must be used as the deployment option.

APIcast needs to be accessible from the public internet and be able to make outbound calls to
the 3scale Service Management API.

The API backend should be accessible by APIcast.

In this case you can set your internal domain name or the IP address of your API in the Private Base URL
field and follow the rest of the steps as usual. Note, however, that you will not be able to take advantage
of the Staging environment, and the test calls will not be successful, as the Staging APIcast instance is
hosted by 3scale and will not have access to your private API backend). But once you deploy APIcast in
your production environment, if the configuration is correct, APIcast will work as expected.

1.7. CONFIGURING APICAST WITH OPENTRACING

OpenTracing is an API specification and method used to profile and monitor microservices. From version
3.3 onwards, APIcast includes OpenTracing Libraries and the Jaeger Tracer library.

1.7.1. Prerequisites

To add distributed tracing to your APIcast deployment, you need to ensure the following prerequisites:

Each external request should have a unique request ID attached, usually via a HTTP header.

Each service should forward the request ID to other services.

Each service should output the request ID in the logs.

Each service should record additional information, like start and end time of the request.

Logs need to be aggregated, and provide a way to parse via HTTP request ID.

1.7.2. Procedure

To configure OpenTracing, use the following environment variables:

OPENTRACING_TRACER: To define which tracer implementation to use. Currently, only Jaeger
is available.

CHAPTER 1. OPERATING APICAST

9

https://www.jaegertracing.io/

OPENTRACING_CONFIG: To specify the default configuration file of your tracer. You can see
an example here.

OPENTRACING_HEADER_FORWARD: Optional. You can set this environment variable
according to your OpenTracing configuration.

For more information about these variables, refer to APIcast environment variables.

To test if the integration is properly working, you need to check if traces are reported in the Jaeger
tracing interface.

1.7.3. Additional information

The OpenTracing and Jaeger integration are available in the upstream project:
https://github.com/3scale/apicast

1.7.4. Installing Jaeger on your OpenShift instance

This section provides information about the installation of Jaeger on the OpenShift instance you are
running.

WARNING

Jaeger is a third-party component, which 3scale does not provide support for, with
the exception of uses with APIcast. The following instructions are provided as a
reference example only, and are not suitable for production use.

1. Install the Jaeger all-in-one in the current namespace:

2. Create a Jaeger configuration file jaeger_config.json and add the following:



oc process -f https://raw.githubusercontent.com/jaegertracing/jaeger-openshift/master/all-in-
one/jaeger-all-in-one-template.yml | oc create -f -

{
 "service_name": "apicast",
 "disabled": false,
 "sampler": {
 "type": "const",
 "param": 1
 },
 "reporter": {
 "queueSize": 100,
 "bufferFlushInterval": 10,
 "logSpans": false,
 "localAgentHostPort": "jaeger-agent:6831"
 },
 "headers": {
 "jaegerDebugHeader": "debug-id",
 "jaegerBaggageHeader": "baggage",

Red Hat 3scale API Management 2.6 Administering the API Gateway

10

https://github.com/3scale/apicast/blob/master/gateway/conf.d/opentracing/jaeger.example.json
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_environment_variables
https://github.com/3scale/apicast

set a sampler constant of 1 to sample all requests

set the location and queue size of the reporter

set headers, including TraceContextHeaderName which we will use to track requests

3. Create a ConfigMap from our Jaeger configuration file and mount it into APIcast:

4. Enable OpenTracing and Jaeger with the configuration we have just added:

5. Find the URL the Jaeger interface is running on:

6. Open the Jaeger interface from the previous step, which shows data being populated from
Openshift Health checks.

7. The final step is to add OpenTracing and Jaeger support to your backend APIs so that you can
see the complete request trace. This varies in each back end, depending on the frameworks and
languages used. As a reference example, you can see Using OpenTracing with Jaeger to collect
Application Metrics in Kubernetes.

For more information on configuring Jaeger, see:

Jaeger on OpenShift development setup

Jaeger on OpenShift production setup

Distributed tracing on OpenShift Service Mesh

 "TraceContextHeaderName": "uber-trace-id",
 "traceBaggageHeaderPrefix": "testctx-"
 },
 "baggage_restrictions": {
 "denyBaggageOnInitializationFailure": false,
 "hostPort": "127.0.0.1:5778",
 "refreshInterval": 60
 }
 }

oc create configmap jaeger-config --from-file=jaeger_config.json
oc volume dc/apicast --add -m /tmp/jaeger/ --configmap-name jaeger-config

oc env deploymentConfig/apicast OPENTRACING_TRACER=jaeger
OPENTRACING_CONFIG=/tmp/jaeger/jaeger_config.json

oc get route
(…) jaeger-query-myproject.127.0.0.1.nip.io

CHAPTER 1. OPERATING APICAST

11

https://developers.redhat.com/blog/2017/07/10/using-opentracing-with-jaeger-to-collect-application-metrics-in-kubernetes/
https://github.com/jaegertracing/jaeger-openshift#development-setup
https://github.com/jaegertracing/jaeger-openshift#production-setup
https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#distributed-tracing-tutorial

CHAPTER 2. OPERATING DOCKER-CONTAINERIZED
ENVIRONMENTS

2.1. TROUBLESHOOTING APICAST ON THE DOCKER-CONTAINERIZED
ENVIRONMENT

This section describes the most common issues that you can find when working with APIcast on a
Docker-containerized environment.

2.1.1. Cannot connect to the Docker daemon error

The docker: Cannot connect to the Docker daemon. Is the docker daemon running on this host?
error message may be because the Docker service hasn’t started. You can check the status of the
Docker daemon by running the sudo systemctl status docker.service command.

Ensure that you are run this command as the root user because the Docker containerized environment
requires root permissions in RHEL by default. For more information, see here).

2.1.2. Basic Docker command-line interface commands

If you started the container in the detached mode (-d option) and want to check the logs for the running
APIcast instance, you can use the log command: sudo docker logs <container>. Where ,<container> is
the container name ("apicast" in the example above) or the container ID. You can get a list of the
running containers and their IDs and names by using the sudo docker ps command.

To stop the container, run the sudo docker stop <container> command. You can also remove the
container by running the sudo docker rm <container> command.

For more information on available commands, see Docker commands reference.

Red Hat 3scale API Management 2.6 Administering the API Gateway

12

http://www.projectatomic.io/blog/2015/08/why-we-dont-let-non-root-users-run-docker-in-centos-fedora-or-rhel/
https://docs.docker.com/engine/reference/commandline/

CHAPTER 3. ADVANCED APICAST CONFIGURATION
This section covers the advanced settings option of 3scale’s API gateway in the staging environment.

3.1. DEFINE A SECRET TOKEN

For security reasons, any request from the 3scale gateway to your API backend contains a header called
X-3scale-proxy-secret-token. You can set the value of this header in Authentication Settings on the
Integration page.

Setting the secret token acts as a shared secret between the proxy and your API so that you can block
all API requests that do not come from the gateway if you do not want them to. This adds an extra layer
of security to protect your public endpoint while you are in the process of setting up your traffic
management policies with the sandbox gateway.

Your API backend must have a public resolvable domain for the gateway to work, so anyone who knows
your API backend can bypass the credentials checking. This should not be a problem because the API
gateway in the staging environment is not meant for production use, but it is always better to have a
fence available.

3.2. CREDENTIALS

The API credentials within 3scale are either user_key or app_id/app_key depending on the
authentication mode that you are using. OpenID Connect is valid for the API gateway in the staging
environment, but it cannot be tested in the Integration page.

However, you might want to use different credential names in your API. In this case, you need to set
custom names for the user_key if you are using the API key mode:

Alternatively, for the app_id and app_key:

CHAPTER 3. ADVANCED APICAST CONFIGURATION

13

For instance, you could rename app_id to key if that fits your API better. The gateway will take the
name key and convert it to app_id before doing the authorization call to the 3scale backend. Note that
the new credential name has to be alphanumeric.

You can decide if your API passes credentials in the query string (or body if not a GET) or in the headers.

NOTE

APIcast normalizes header names when extracting credentials. This means they are case
insensitive, and underscores and hyphens are treated equally. For example, if you set the
App Key parameter as App_Key, other values such as app-key are also accepted as valid
app key headers.

3.3. CONFIGURING ERROR MESSAGES

This section describes how to configure APIcast error messages.

As a proxy, 3scale APIcast manages requests in the following ways:

If there are no errors, APIcast passes the request from the client to the API back end server, and
returns the API response to the client without modifications. In case you want to modify the
responses, you can use the Header Modification policy .

If the API responds with an error message, such as 404 Not Found or 400 Bad Request,
APIcast returns the message to the client. However, if APIcast detects other errors such as
Authentication missing, APIcast sends an error message and terminates the request.

Hence, you can configure these error messages to be returned by APIcast:

Authentication failed: This error means that the API request does not contain the valid
credentials, whether due to fake credentials or because the application is temporarily
suspended. Additionally, this error is generated when the metric is disabled, meaning its value is
0.

Authentication missing: This error is generated whenever an API request does not contain any
credentials. It occurs when users do not add their credentials to an API request.

No match: This error means that the request did not match any mapping rule and therefore no
metric is updated. This is not necessarily an error, but it means that either the user is trying
random paths or that your mapping rules do not cover legitimate cases.

Red Hat 3scale API Management 2.6 Administering the API Gateway

14

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_policies#header_modification

Usage limit exceeded: This error means that the client reached its rate limits for the requested
endpoint. A client may reach more than one rate limit if the request matches multiple mapping
rules.

To configure errors, follow these steps:

1. Navigate from [Your_API_name] > Integration > edit APIcast configuration > Gateway
response.

2. Choose the error type you want to configure.

3. Specify values for these fields:

Response Code: the three-digit HTTP response code.

Content-type: the value of the Content-Type header.

Response Body: the value of the response message body.

4. To save your changes, click Update & test in Staging Environment.

3.4. CONFIGURATION HISTORY

Every time you click the Update & Test Staging Configuration button, the current configuration is
saved in a JSON file. The staging gateway will pull the latest configuration with each new request. For
each environment, staging or production, you can see a history of all the previous configuration files.

Note that it is not possible to automatically roll back to previous versions. Instead a history of all your
configuration versions with their associated JSON files is provided. Use these files to check what
configuration you had deployed at any point of time. If you want to, you can recreate any deployments
manually.

3.5. DEBUGGING

Setting up the gateway configuration is easy, but you may still encounter errors. In such cases, the
gateway can return useful debug information to track the error.

To get the debugging information from APIcast, you must add the following header to the API request:
X-3scale-debug: {SERVICE_TOKEN} with the service token corresponding to the API service that you
are reaching to.

When the header is found and the service token is valid, the gateway will add the following information
to the response headers:

X-3scale-matched-rules: /v1/word/{word}.json, /v1
X-3scale-credentials: app_key=APP_KEY&app_id=APP_ID
X-3scale-usage: usage%5Bversion_1%5D=1&usage%5Bword%5D=1

X-3scale-matched-rules indicates which mapping rules have been matched for the request in a comma-
separated list.

The header X-3scale-credentials returns the credentials that were passed to 3scale backend.

X-3scale-usage indicates the usage that was reported to 3scale backend.
usage%5Bversion_1%5D=1&usage%5Bword%5D=1 is a URL-encoded

CHAPTER 3. ADVANCED APICAST CONFIGURATION

15

usage[version_1]=1&usage[word]=1 and shows that the API request incremented the methods
(metrics) version_1 and word by 1 hit each.

3.6. PATH ROUTING

APIcast handles all the API services configured on a 3scale account (or a subset of services, if the
APICAST_SERVICES_LIST environment variable is configured). Normally, APIcast routes the API
requests to the appropriate API service based on the hostname of the request, by matching it with the
Public Base URL . The first service where the match is found is used for the authorization.

The Path routing feature allows using the same Public Base URL on multiple services and routes the
requests using the path of the request. To enable the feature, set the APICAST_PATH_ROUTING
environment variable to true or 1. When enabled, APIcast will map the incoming requests to the services
based on both hostname and path.

This feature can be used if you want to expose multiple backend services hosted on different domains
through one gateway using the same Public Base URL . To achieve this you can configure several API
services for each API backend (i.e. Private Base URL) and enable the path routing feature.

For example, you have 3 services configured in the following way:

Service A Public Base URL: api.example.com Mapping rule: /a

Service B Public Base URL: api2.example.com Mapping rule: /b

Service C Public Base URL: api.example.com Mapping rule: /c

If path routing is disabled (APICAST_PATH_ROUTING=false), all calls to api.example.com will try to
match Service A. So, the calls api.example.com/c and api.example.com/b will fail with a "No Mapping
Rule matched" error.

If path routing is enabled (APICAST_PATH_ROUTING=true), the calls will be matched by both host
and path. So:

api.example.com/a will be routed to Service A

api.example.com/c will be routed to Service C

api.example.com/b will fail with "No Mapping Rule matched" error, i.e. it will NOT match Service
B, as the Public Base URL does not match.

If path routing is used, you must ensure there is no conflict between the mapping rules in different
services that use the same Public Base URL , i.e. each combination of method + path pattern is only used
in one service.

Red Hat 3scale API Management 2.6 Administering the API Gateway

16

CHAPTER 4. APICAST POLICIES
APIcast policies are units of functionality that modify how APIcast operates. Policies can be enabled,
disabled, and configured to control how they modify APIcast. Use policies to add functionality that is not
available in a default APIcast deployment. You can create your own policies, or use standard policies
provided by Red Hat 3scale.

The following topics provide information about the standard APIcast policies, creating your own custom
APIcast policies, and creating a policy chain.

APIcast Standard Policies

Creating custom APIcast policies

Creating a policy chain in the AMP

Control policies for a service with a policy chain. Policy chains do the following:

specify what policies APIcast uses

provide configuration information for policies 3scale uses

specify the order in which 3scale loads policies

NOTE

Red Hat 3scale provides a method for adding custom policies, but does not support
custom policies.

In order to modify APIcast behavior with custom policies, you must do the following:

Add custom policies to APIcast

Define a policy chain that configures APIcast policies

Add the policy chain to APIcast

4.1. APICAST STANDARD POLICIES

3scale provides the following standard policies:

Section 4.1.1, “3scale Auth Caching policy”

Section 4.1.2, “3scale Batcher policy”

Section 4.1.3, “Anonymous Access policy”

Section 4.1.4, “CORS Request Handling policy”

Section 4.1.5, “Echo policy”

Section 4.1.6, “Edge Limiting policy”

Section 4.1.7, “Header Modification policy”

Section 4.1.8, “IP Check policy”

CHAPTER 4. APICAST POLICIES

17

Section 4.1.9, “JWT Claim Check policy”

Section 4.1.10, “Liquid Context Debug policy”

Section 4.1.11, “Logging policy”

Section 4.1.12, “OAuth 2.0 Token Introspection policy”

Section 4.1.13, “Prometheus metrics”

Section 4.1.14, “Referrer policy”

Section 4.1.16, “RH-SSO/Keycloak Role Check policy”

Section 4.1.17, “Routing policy”

Section 4.1.18, “SOAP policy”

Section 4.1.19, “TLS Client Certificate Validation policy”

Section 4.1.20, “Upstream policy”

Section 4.1.21, “Upstream Connection policy”

Section 4.1.22, “URL Rewriting policy”

Section 4.1.23, “URL Rewriting with Captures policy”

You can enable and configure standard policies in the 3scale API Management.

4.1.1. 3scale Auth Caching policy

The 3scale Auth Caching policy caches authentication calls made to APIcast. You can select an
operating mode to configure the cache operations.

3scale Auth Caching is available in the following modes:

1. Strict - Cache only authorized calls.

"Strict" mode only caches authorized calls. If a policy is running under the "strict" mode and if a call fails
or is denied, the policy invalidates the cache entry. If the backend becomes unreachable, all cached calls
are rejected, regardless of their cached status.

2. Resilient – Authorize according to last request when backend is down.

The "Resilient" mode caches both authorized and denied calls. If the policy is running under the
"resilient" mode, failed calls do not invalidate an existing cache entry. If the backend becomes
unreachable, calls hitting the cache continue to be authorized or denied based on their cached status.

3. Allow - When backend is down, allow everything unless seen before and denied.

The "Allow" mode caches both authorized and denied calls. If the policy is running under the "allow"
mode, cached calls continue to be denied or allowed based on the cached status. However, any new calls
are cached as authorized.

IMPORTANT

Red Hat 3scale API Management 2.6 Administering the API Gateway

18

IMPORTANT

Operating in the "allow" mode has security implications. Consider these implications and
exercise caution when using the "allow" mode.

4. None - Disable caching.

The "None" mode disables caching. This mode is useful if you want the policy to remain active, but do
not want to use caching.

Configuration properties

property description values required?

caching_type The caching_type
property allows you to
define which mode the
cache will operate in.

data type: enumerated
string [resilient, strict,
allow, none]

yes

Policy object example

{
 "name": "caching",
 "version": "builtin",
 "configuration": {
 "caching_type": "allow"
 }
}

For information on how to configure policies, see the Creating a policy chain section of the
documentation.

4.1.2. 3scale Batcher policy

The 3scale Batcher policy provides an alternative to the standard APIcast authorization mechanism, in
which one call to the 3scale backend (Service Management API) is made for each API request APIcast
receives.

The 3scale Batcher policy reduces latency and increases throughput by significantly reducing the
number of requests to the 3scale backend. In order to achieve this, this policy caches authorization
statuses and batches usage reports.

When the 3scale Batcher policy is enabled, APIcast uses the following authorization flow:

1. On each request, the policy checks whether the credentials are cached:

If the credentials are cached, the policy uses the cached authorization status instead of
calling the 3scale backend.

If the credentials are not cached, the policy calls the backend and caches the authorization
status with a configurable Time to Live (TTL).

2. Instead of reporting the usage corresponding to the request to the 3scale backend immediately,
the policy accumulates their usage counters to report them to the backend in batches. A

CHAPTER 4. APICAST POLICIES

19

separate thread reports the accumulated usage counters to the 3scale backend in a single call,
with a configurable frequency.

The 3scale Batcher policy improves the throughput, but with reduced accuracy. The usage limits and the
current utilization are stored in 3scale, and APIcast can only get the correct authorization status when
making calls to the 3scale backend. When the 3scale Batcher policy is enabled, there is a period of time
APIcast is not sending calls to 3scale. During this window, applications making calls might go over the
defined limits.

Use this policy for high-load APIs if the throughput is more important than the accuracy of the rate
limiting. The 3scale Batcher policy gives better results in terms of accuracy when the reporting
frequency and authorization TTL are much less than the rate limiting period. For example, if the limits
are per day and the reporting frequency and authorization TTL are configured to be several minutes.

The 3scale Batcher policy supports the following configuration settings:

auths_ttl: Sets the TTL in seconds when the authorization cache expires.
When the authorization for the current call is cached, APIcast uses the cached value. After the
time set in the auths_ttl parameter, APIcast removes the cache and calls the 3scale backend to
retrieve the authorization status.

batch_report_seconds: Sets the frequency of batch reports APIcast sends to the 3scale
backend. The default value is 10 seconds.

IMPORTANT

To use this policy, enable both the 3scale APIcast and 3scale Batcher policy in the
policy chain.

4.1.3. Anonymous Access policy

The Anonymous Access policy exposes a service without authentication. It can be useful, for example,
for legacy applications that cannot be adapted to send the authentication parameters. The Anonymous
policy only supports services with API Key and App Id / App Key authentication options. When the policy
is enabled for API requests that do not have any credentials provided, APIcast will authorize the calls
using the default credentials configured in the policy. For the API calls to be authorized, the application
with the configured credentials must exist and be active.

Using the Application Plans, you can configure the rate limits on the application used for the default
credentials.

NOTE

You need to place the Anonymous Access policy before the APIcast Policy, when using
these two policies together in the policy chain.

Following are the required configuration properties for the policy:

auth_type: Select a value from one of the alternatives below and make sure the property
corresponds to the authentication option configured for the API:

app_id_and_app_key: For App ID / App Key authentication option.

user_key: For API key authentication option.

Red Hat 3scale API Management 2.6 Administering the API Gateway

20

app_id (only for app_id_and_app_key auth type): The App Id of the application that will be
used for authorization if no credentials are provided with the API call.

app_key (only for app_id_and_app_key auth type): The App Key of the application that will be
used for authorization if no credentials are provided with the API call.

user_key (only for the user_key auth_type): The API Key of the application that will be used for
authorization if no credentials are provided with the API call.

Figure 4.1. Anonymous Access Policy

4.1.4. CORS Request Handling policy

The Cross Origin Resource Sharing (CORS) request handling policy allows you to control CORS behavior
by allowing you to specify:

Allowed headers

Allowed methods

Allow credentials

Allowed origin headers

The CORS request handling policy will block all unspecified CORS requests.

NOTE

CHAPTER 4. APICAST POLICIES

21

NOTE

You need to place the CORS Request Handling policy before the APIcast Policy, when
using these two policies together in the policy chain.

Configuration properties

property description values required?

allow_headers The allow_headers
property is an array in
which you can specify
which CORS headers
APIcast will allow.

data type: array of
strings, must be a CORS
header

no

allow_methods The allow_methods
property is an array in
which you can specify
which CORS methods
APIcast will allow.

data type: array of
enumerated strings
[GET, HEAD, POST,
PUT, DELETE, PATCH,
OPTIONS, TRACE,
CONNECT]

no

allow_origin The allow_origin
property allows you to
specify an origin domain
APIcast will allow

data type: string no

allow_credentials The
allow_credentials
property allows you to
specify whether APIcast
will allow a CORS
request with credentials

data type: boolean no

Policy object example

{
 "name": "cors",
 "version": "builtin",
 "configuration": {
 "allow_headers": [
 "App-Id", "App-Key",
 "Content-Type", "Accept"
],
 "allow_credentials": true,
 "allow_methods": [
 "GET", "POST"
],
 "allow_origin": "https://example.com"
 }
}

Red Hat 3scale API Management 2.6 Administering the API Gateway

22

For information on how to configure policies, refer to the Creating a policy chain section of the
documentation.

4.1.5. Echo policy

The Echo policy prints an incoming request back to the client, along with an optional HTTP status code.

Configuration properties

property description values required?

status The HTTP status code
the echo policy will
return to the client

data type: integer no

exit Specifies which exit
mode the echo policy
will use. The request
exit mode stops the
incoming request from
being processed. The
set exit mode skips the
rewrite phase.

data type: enumerated
string [request, set]

yes

Policy object example

{
 "name": "echo",
 "version": "builtin",
 "configuration": {
 "status": 404,
 "exit": "request"
 }
}

For information on how to configure policies, refer to the Creating a policy chain section of the
documentation.

4.1.6. Edge Limiting policy

The Edge Limiting policy aims to provide flexible rate limiting for the traffic sent to the backend API and
can be used with the default 3scale authorization. Some examples of the use cases supported by the
policy include:

End-user rate limiting: Rate limit by the value of the "sub" (subject) claim of a JWT token passed
in the Authorization header of the request (configured as {{ jwt.sub }}).

Requests Per Second (RPS) rate limiting.

Global rate limits per service: Apply limits per service rather than per application.

Concurrent connection limit: Set the number of concurrent connections allowed.

CHAPTER 4. APICAST POLICIES

23

4.1.6.1. Types of limits

The policy supports the following types of limits that are provided by the lua-resty-limit-traffic library:

leaky_bucket_limiters: Based on the "leaky_bucket" algorithm that is based on the average
number of requests plus a maximum burst size.

fixed_window_limiters: Based on a fixed window of time (last X seconds).

connection_limiters: Based on the concurrent number of connections.

You can scope any limit by service or globally.

4.1.6.2. Limit definition

The limits have a key that encodes the entities that are used to define the limit (an IP, a service, an
endpoint, an ID, the value for a specific header, etc.). The Key is specified in the key parameter of the
limiter.

key is an object that is defined by the following properties:

name: It is the name of the key. It must be unique in the scope.

scope: It defines the scope of the key. The supported scopes are:

Per service scope that affects one service (service).

Global scope that affects all the services (global).

name_type: It defines how the "name" value will be evaluated:

As plain text (plain)

As Liquid (liquid)

Each limit also has some parameters that vary depending on their types:

leaky_bucket_limiters: rate, burst.

rate: It defines how many requests can be made per second without a delay.

burst: It defines the amount of requests per second that can exceed the allowed rate. An
artificial delay is introduced for requests above the allowed rate (specified by rate). After
exceeding the rate by more requests per second than defined in burst, the requests get
rejected.

fixed_window_limiters: count, window. count defines how many requests can be made per
number of seconds defined in window.

connection_limiters: conn, burst, delay.

conn: Defines the maximum number of the concurrent connections allowed. It allows
exceeding that number by burst connections per second.

delay: It is the number of seconds to delay the connections that exceed the limit.

Red Hat 3scale API Management 2.6 Administering the API Gateway

24

https://github.com/openresty/lua-resty-limit-traffic

Examples

1. Allow 10 requests per minute to service_A:

{
 "key": { "name": "service_A" },
 "count": 10,
 "window": 60
}

2. Allow 100 connections with bursts of 10 with a delay of 1s:

{
 "key": { "name": "service_A" },
 "conn": 100,
 "burst": 10,
 "delay": 1
}

You can define several limits for each service. In case multiple limits are defined, the request can be
rejected or delayed if at least one limit is reached.

4.1.6.3. Liquid templating

The Edge Limiting policy allows specifying the limits for the dynamic keys by supporting Liquid variables
in the keys. For this, the name_type parameter of the key must be set to "liquid" and the name
parameter can then use Liquid variables. Example: {{ remote_addr }} for the client IP address or {{
jwt.sub }} for the "sub" claim of the JWT token.

Example:

{
 "key": { "name": "{{ jwt.sub }}", "name_type": "liquid" },
 "count": 10,
 "window": 60
}

For more information about Liquid support, see Section 5.1, “Using variables and filters in policies” .

4.1.6.4. Applying conditions

Each limiter can have an optional condition that defines when the limiter must be applied. The condition
is specified in the condition property of the limiter.

condition is defined by the following properties:

combine_op. It is the boolean operator applied to the list of operations. The following two
values are supported: or and and.

operations. It is a list of conditions that need to be evaluated. Each operation is represented by
an object with the following properties:

left: The left part of the operation.

CHAPTER 4. APICAST POLICIES

25

left_type: How the left property is evaluated (plain or liquid).

right: The right part of the operation.

right_type: How the right property is evaluated (plain or liquid).

op: Operator applied between the left and the right parts. The following two values are
supported: == (equals) and != (not equals).

Example:

"condition": {
 "combine_op": "and",
 "operations": [
 {
 "op": "==",
 "right": "GET",
 "left_type": "liquid",
 "left": "{{ http_method }}",
 "right_type": "plain"
 }
]
}

4.1.6.5. Configuring the store

By default, Edge Limiting policy uses OpenResty shared dictionary for the rate limiting counters.
However, an external Redis server can be used instead of the shared dictionary. This can be useful when
multiple APIcast instances are used. Redis server can be configured using the redis_url parameter.

4.1.6.6. Error handling

The limiters support the following parameters to configure how the errors are handled:

limits_exceeded_error allows to configure the error status code and message that will be
returned to the client when the configured limits are exceeded. The following parameters should
be configured:

status_code: The status code of the request when the limits are exceeded. Default: 429.

error_handling: How to handle the error.

exit: "Respond with an error".

log: "Let the request go through and only output logs"

configuration_error allows to configure the error status code and message that will be
returned to the client in case of incorrect configuration. The following parameters should be
configured:

status_code : The status code when there is a configuration issue. Default: 500.

error_handling: How to handle the error.

exit: "Respond with an error".

Red Hat 3scale API Management 2.6 Administering the API Gateway

26

log: "Let the request go through and only output logs".

4.1.7. Header Modification policy

The Header Modification policy allows you to modify the existing headers or define additional headers to
add to or remove from an incoming request or response. You can modify both response and request
headers.

The Header Modification policy supports the following configuration parameters:

request: List of operations to apply to the request headers

response: List of operations to apply to the response headers

Each operation consists of the following parameters:

op: Specifies the operation to be applied. The add operation adds a value to an existing header.
The set operation creates a header and value, and will overwrite an existing header’s value if one
already exists. The push operation creates a header and value, but will not overwrite an existing
header’s value if one already exists. Instead, push will add the value to the existing header. The
delete operation removes the header.

header: Specifies the header to be created or modified and can be any string that can be used
as a header name (e.g. Custom-Header).

value_type: Defines how the header value will be evaluated and can either be plain for plain
text or liquid for evaluation as a Liquid template. For more information, see Section 5.1, “Using
variables and filters in policies”.

value: Specifies the value that will be used for the header. For value type "liquid" the value
should be in the format {{ variable_from_context }}. Not needed when deleting.

Policy object example

{
 "name": "headers",
 "version": "builtin",
 "configuration": {
 "response": [
 {
 "op": "add",
 "header": "Custom-Header",
 "value_type": "plain",
 "value": "any-value"
 }
],
 "request": [
 {
 "op": "set",
 "header": "Authorization",
 "value_type": "plain",
 "value": "Basic dXNlcm5hbWU6cGFzc3dvcmQ="
 },
 {
 "op": "set",

CHAPTER 4. APICAST POLICIES

27

 "header": "Service-ID",
 "value_type": "liquid",
 "value": "{{service.id}}"
 }
]
 }
}

For information on how to configure policies, see the Creating a policy chain section of the
documentation.

4.1.8. IP Check policy

The IP Check policy is used to deny or allow requests based on a list of IPs.

Configuration properties

property description data type required?

check_type The check_type
property has two
possible values,
whitelist or blacklist.
blacklist will deny all
requests from IPs on the
list. whitelist will deny
all requests from IPs not
on the list.

string, must be either
whitelist or blacklist

yes

ips The ips property allows
you to specify a list of IP
addresses to whitelist or
blacklist. Both single IPs
and CIDR ranges can be
used.

array of strings, must be
valid IP addresses

yes

error_msg The error_msg
property allows you to
configure the error
message returned when
a request is denied.

string no

client_ip_sources The
client_ip_sources
property allows you to
configure how to
retrieve the client IP. By
default, the last caller IP
is used. The other
options are X-
Forwarded-For and X-
Real-IP.

array of strings, valid
options are one or more
of X-Forwarded-For,
X-Real-IP, last_caller.

no

Red Hat 3scale API Management 2.6 Administering the API Gateway

28

Policy object example

{
 "name": "ip_check",
 "configuration": {
 "ips": ["3.4.5.6", "1.2.3.0/4"],
 "check_type": "blacklist",
 "client_ip_sources": ["X-Forwarded-For", "X-Real-IP", "last_caller"],
 "error_msg": "A custom error message"
 }
}

For information on how to configure policies, refer to the Creating a policy chain section of the
documentation.

4.1.9. JWT Claim Check policy

4.1.9.1. About JWT Claim Check policy

The JWT Claim Check policy allows you to define new rules based on any JSON Web Token(JWT) claim,
resource target and the method that you are interested in blocking. To be able to route based on the
value of a JWT claim, you need a policy in the chain that validates the JWT and stores the claim in the
context that the policies share.

If the JWT Claim Check policy is blocking a resource and a method, the policy also validates the JWT
operations. Alternatively, in case that the method resource does not match, the request continues to the
backend API.

Example: In case of a GET request, the JWT needs to have the role claim as admin, if not the request will
be denied. On the other hand, any non GET request will not validate the JWT operations, so POST
resource is allowed without JWT constraint.

{
 "name": "apicast.policy.jwt_claim_check",
 "configuration": {
 "error_message": "Invalid JWT check",
 "rules": [
 {
 "operations": [
 {"op": "==", "jwt_claim": "role", "jwt_claim_type": "plain", "value": "admin"}
],
 "combine_op":"and",
 "methods": ["GET"],
 "resource": "/resource",
 "resource_type": "plain"
 }
]
 }
}

4.1.9.2. Configuring JWT Claim Check policy in your policy chain

4.1.9.2.1. Prerequisites:

CHAPTER 4. APICAST POLICIES

29

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.9.2.2. Configuring the policy

1. To add the JWT Claim Check policy to your API, follow the steps described in Enabling a
standard Policy and choose JWT Claim Check.

2. Click the JWT Claim Check link.

3. To enable the policy, select the Enabled checkbox.

4. To add rules, click the plus + icon.

5. Specify the resource_type.

6. Choose the operator.

7. Indicate the resource controlled by the rule.

8. To add the allowed methods, click the plus + icon.

9. Type the error message to show to the user when traffic is blocked.

10. When you have finished setting up your API with JWT Claim Check, click Update Policy.

Additionally:

You can add more resource types and allowed methods by clicking the plus + icon in the
corresponding section.

To save your changes, click Update & test in Staging Environment.

4.1.10. Liquid Context Debug policy

NOTE

The Liquid Context Debug policy is meant only for debugging purposes in the
development environment and not in production.

This policy responds to the API request with a JSON, containing the objects and values that are available
in the context and can be used for evaluating Liquid templates. When combined with the 3scale APIcast
or Upstream policy, Liquid Context Debug must be placed before them in the policy chain in order to
work correctly. To avoid circular references, the policy only includes duplicated objects once and
replaces them with a stub value.

An example of the value returned by APIcast when the policy is enabled:

{
 "jwt": {
 "azp": "972f7b4f",
 "iat": 1537538097,
 ...
 "exp": 1537574096,

Red Hat 3scale API Management 2.6 Administering the API Gateway

30

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway#enablePolicy

 "typ": "Bearer"
 },
 "credentials": {
 "app_id": "972f7b4f"
 },
 "usage": {
 "deltas": {
 "hits": 1
 },
 "metrics": [
 "hits"
]
 },
 "service": {
 "id": "2",
 ...
 }
 ...
}

4.1.11. Logging policy

The Logging policy allows enabling or disabling APIcast (NGINX) access logs for each API service
individually. By default, this policy is not enabled in policy chains.

This policy only supports the enable_access_logs configuration parameter. To disable access logging
for a service, enable the policy, unselect the enable_access_logs parameter and click the Submit
button. To enable the access logs, select the enable_access_logs parameter or disable the Logging
policy.

You can combine the Logging policy with the global setting for the location of access logs. Set the
APICAST_ACCESS_LOG_FILE environment variable to configure the location of APIcast access logs.
By default, this variable is set to /dev/stdout, which is the standard output device. For further details
about global APIcast parameters, see Chapter 6, APIcast environment variables.

4.1.12. OAuth 2.0 Token Introspection policy

The OAuth 2.0 Token Introspection policy allows validating the JSON Web Token (JWT) token used for

CHAPTER 4. APICAST POLICIES

31

The OAuth 2.0 Token Introspection policy allows validating the JSON Web Token (JWT) token used for
services with the OpenID Connect authentication option using the Token Introspection Endpoint of the
token issuer (Red Hat Single Sign-On).

APIcast supports the following authentication types in the auth_type field to determine the Token
Introspection Endpoint and the credentials APIcast uses when calling this endpoint:

use_3scale_oidc_issuer_endpoint

With this setting, APIcast uses the client credentials (Client ID and Client Secret) and the Token
Introspection Endpoint from the OpenID Connect Issuer setting configured on the Service
Integration page.
APIcast discovers the Token Introspection endpoint from the token_introspection_endpoint field
the .well-known/openid-configuration endpoint of the OpenID Connect issuer returns.

Example 4.1. Authentication type set to use_3scale_oidc_issuer_endpoint

The following is a configuration example if the authentication type is set to
use_3scale_oidc_issuer_endpoint:

"policy_chain": [
… ​
 {
 "name": "apicast.policy.token_introspection",
 "configuration": {
 "auth_type": "use_3scale_oidc_issuer_endpoint"
 }
 }
… ​
],

client_id+client_secret

This option enables you to specify a different Token Introspection Endpoint, as well as the Client ID
and Client Secret APIcast uses to request token information.
When using this option, set the following configuration parameters:

client_id: Sets the Client ID for the Token Introspection Endpoint.

client_secret: Sets the Client Secret for the Token Introspection Endpoint.

introspection_url: Sets the Introspection Endpoint URL.

Example 4.2. Authentication type set to client_id+client_secret

The following is a configuration example if the authentication type is set to
client_id+client_secret:

"policy_chain": [
… ​
 {
 "name": "apicast.policy.token_introspection",
 "configuration": {
 "auth_type": "client_id+client_secret",
 "client_id": "myclient",

Red Hat 3scale API Management 2.6 Administering the API Gateway

32

 "client_secret": "mysecret",
 "introspection_url": "http://red_hat_single_sign-on/token/introspection"
 }
 }
… ​
],

Regardless of the setting in the auth_type field, APIcast uses Basic Authentication to authorize the
Token Introspection call (Authorization: Basic <token> header, where <token> is Base64-encoded
<client_id>:<client_secret> setting).

CHAPTER 4. APICAST POLICIES

33

The response of the Token Introspection Endpoint contains the active attribute. APIcast checks the
value of this attribute. Depending on the value of the attribute, APIcast authorizes or rejects the call:

Red Hat 3scale API Management 2.6 Administering the API Gateway

34

true: The call is authorized

false: The call is rejected with the Authentication Failed error

The policy allows enabling caching of the tokens to avoid calling the Token Introspection Endpoint on
every call for the same JWT token. To enable token caching for the Token Introspection Policy, set the
max_cached_tokens field to a value from 0, which disables the feature, and 10000. Additionally, you
can set a Time to Live (TTL) value from 1 to 3600 seconds for tokens in the max_ttl_tokens field.

4.1.13. Prometheus metrics

Prometheus is a stand-alone, open source systems monitoring and alerting toolkit. You can use
Prometheus to visualize metrics and alerts for APIcast-managed API services.

Prometheus metrics availability

Prometheus metrics are only accessible with certain APIcast deployment options:

Deployment Prometheus
supported?

Availability? Resources

Hosted APIcast No - -

Embedded APIcast Yes Prometheus is
supported on OpenShift
3.11+

Refer to the OpenShift
Open Container
Platform documentation
for guidance on
configuration.

Self-managed APIcast Yes Prometheus is
supported if using
OpenShift 3.11+. For
Docker environments or
other self-managed
options, you will need to
install and configure
Prometheus yourself.

Refer to the OpenShift
Open Container
Platform documentation
for guidance on
configuration.

Prometheus metrics list

The following metrics are always available:

Metric Description Type Labels

nginx_http_connections Number of HTTP
connections

gauge state(accepted,active,h
andled,reading,total,wait
ing,writing)

nginx_error_log APIcast errors counter level(debug,info,notice,
warn,error,crit,alert,emer
g)

CHAPTER 4. APICAST POLICIES

35

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/installing_3scale/installing-apicast#deployment-options
https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html#openshift-prometheus
https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html#openshift-prometheus

openresty_shdict_capaci
ty

Capacity of the
dictionaries shared
between workers

gauge dict(one for every
dictionary)

openresty_shdict_free_s
pace

Free space of the
dictionaries shared
between workers

gauge dict(one for every
dictionary)

nginx_metric_errors_tot
al

Number of errors of the
Lua library that
manages the metrics

counter -

total_response_time_sec
onds

Time needed to sent a
response to the client
(in seconds)

Note: To access the
service_id and
service_system_nam
e labels, you must set
the
APICAST_EXTENDED_
METRICS environment
variable to true.

histogram service_id,
service_system_name

upstream_response_tim
e_seconds

Response times from
upstream servers (in
seconds)

Note: To access the
service_id and
service_system_nam
e labels, you must set
the
APICAST_EXTENDED_
METRICS environment
variable to true.

histogram service_id,
service_system_name

upstream_status HTTP status from
upstream servers

Note: To access the
service_id and
service_system_nam
e labels, you must set
the
APICAST_EXTENDED_
METRICS environment
variable to true.

counter status, service_id,
service_system_name

Metric Description Type Labels

Red Hat 3scale API Management 2.6 Administering the API Gateway

36

threescale_backend_call
s

Authorize and report
requests to the 3scale
backend (Apisonator)

counter endpoint(authrep, auth,
report), status(2xx, 4xx,
5xx)

Metric Description Type Labels

The following metrics are only available when using the 3scale Batcher policy:

Metric Description Type Labels

batching_policy_auths_c
ache_hits

Hits in the auths cache
of the 3scale batching
policy

counter -

batching_policy_auths_c
ache_misses

Misses in the auths
cache of the 3scale
batching policy

counter -

Metrics with no value

If a metric has no value, the metric is hidden. For example, if nginx_error_log has no errors to report,
the nginx_error_log metric is not displayed. It will only be visible once it has a value.

4.1.14. Referrer policy

The Referrer policy enables the Referrer Filtering feature. When the policy is enabled in the service
policy chain, APIcast sends the value of the Referer policy of the upcoming request to the Service
Management API (AuthRep call) in the referrer parameter. For more information on how Referrer
Filtering works, see the Referrer Filtering section in Authentication Patterns.

4.1.15. Retry policy

The Retry policy sets the number of retry requests to the upstream API. The retry policy is configured
per service, so users can enable retries for as few or as many of their services as desired, as well as
configure different retry values for different services.

IMPORTANT

As of 3scale 2.6, it is not possible to configure which cases to retry from the policy. This is
controlled with the environment variable APICAST_UPSTREAM_RETRY_CASES, which
applies retry requests to all services. For more on this, check out
APICAST_UPSTREAM_RETRY_CASES.

An example of the retry policy JSON is shown below:

{
 "$schema": "http://apicast.io/policy-v1/schema#manifest#",
 "name": "Retry",
 "summary": "Allows retry requests to the upstream",
 "description": "Allows retry requests to the upstream",

CHAPTER 4. APICAST POLICIES

37

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/api_authentication/authentication-patterns#referrer_filtering

4.1.16. RH-SSO/Keycloak Role Check policy

This policy adds role check when used with the OpenID Connect authentication option. This policy
verifies realm roles and client roles in the access token issued by Red Hat Single Sign-On (RH-SSO).
The realm roles are specified when you want to add role check to every client resource or 3scale.

There are the two types of role checks that the type property specifies in the policy configuration:

whitelist (default): When whitelist is used, APIcast will check if the specified scopes are present
in the JWT token and will reject the call if the JWT doesn’t have the scopes.

blacklist: When blacklist is used, APIcast will reject the calls if the JWT token contains the
blacklisted scopes.

It is not possible to configure both checks – blacklist and whitelist in the same policy, but you can add
more than one instance of the RH-SSO/Keycloak role check policy to the APIcast policy chain.

You can configure a list of scopes via the scopes property of the policy configuration.

Each scope object has the following properties:

resource: Resource (endpoint) controlled by the role. This is the same format as Mapping Rules.
The pattern matches from the beginning of the string and to make an exact match you must
append $ at the end.

resource_type: This defines how the resource value is evaluated.

As plain text (plain): Evaluates the resource value as plain text. Example:
/api/v1/products$.

As Liquid text (liquid): Allows using Liquid in the resource value. Example: /resource_{{
jwt.aud }} manages access to the resource including the Client ID (contained in the JWT
aud claim).

methods: Use this parameter to list the allowed HTTP methods in APIcast, based on the user
roles in RH-SSO. As examples, you can allow methods that have:

The role1 realm role to access /resource1. For those methods that do not have this realm
role, you need to specify the blacklist.

The client1 role called role1 to access /resource1.

The role1 and role2 realm roles to access /resource1. Specify the roles in realm_roles. You

 "version": "builtin",
 "configuration": {
 "type": "object",
 "properties": {
 "retries": {
 "description": "Number of retries",
 "type": "integer",
 "minimum": 1,
 "maximum": 10
 }
 }
 }
}

Red Hat 3scale API Management 2.6 Administering the API Gateway

38

The role1 and role2 realm roles to access /resource1. Specify the roles in realm_roles. You
can also indicate the scope for each role.

The client role called role1 of the application client, the recipient of the access token, to
access /resource1. Use liquid client type to specify the JSON Web Token (JWT)
information to the client.

The client role including the client ID of the application client, the recipient of the access
token, to access /resource1. Use liquid client type to specify the JWT information to the
name of the client role.

The client role called role1 to access the resource including the application client ID. Use
liquid client type to specify the JWT information to the resource.

realm_roles: Use it to check the realm role (see the Realm Roles in Red Hat Single Sign-On
documentation).
The realm roles are present in the JWT issued by Red Hat Single Sign-On.

 "realm_access": {
 "roles": [
 "<realm_role_A>", "<realm_role_B>"
]
 }

The real roles must be specified in the policy.

"realm_roles": [
 { "name": "<realm_role_A>" }, { "name": "<realm_role_B>" }
]

Following are the available properties of each object in the realm_roles array:

name: Specifies the name of the role.

name_type: Defines how the name must be evaluated; it can be plain or liquid (works the same
way as for the resource_type).

client_roles: Use client_roles to check for the particular access roles in the client namespace
(see the Client Roles in Red Hat Single Sign-On documentation).
The client roles are present in the JWT under the resource_access claim.

 "resource_access": {
 "<client_A>": {
 "roles": [
 "<client_role_A>", "<client_role_B>"
]
 },
 "<client_B>": {
 "roles": [
 "<client_role_A>", "<client_role_B>"
]
 }
 }

Specify the client roles in the policy.

CHAPTER 4. APICAST POLICIES

39

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html/server_administration_guide/roles#client_roles
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html/server_administration_guide/roles#client_roles

"client_roles": [
 { "name": "<client_role_A>", "client": "<client_A>" },
 { "name": "<client_role_B>", "client": "<client_A>" },
 { "name": "<client_role_A>", "client": "<client_B>" },
 { "name": "<client_role_B>", "client": "<client_B>" }
]

Following are the available properties of each object in the client_roles array:

name: Specifies the name of the role.

name_type: Defines how the name value must be evaluated; it can be plain or liquid (works the
same way as for the resource_type).

client: Specifies the client of the role. When it is not defined, this policy uses the aud claim as
the client.

client_type: Defines how the client value must be evaluated; it can be plain or liquid (works the
same way as for the resource_type).

4.1.17. Routing policy

The Routing policy allows you to route requests to different target endpoints. You can define target
endpoints and then you will be able to route incoming requests from the UI to those using regular
expressions.

Routing is based on the following rules:

Request path rule

Header rule

Query argument rule

JSON Web Token (JWT) claim rule

When combined with the APIcast policy, the Routing policy should be placed before the APIcast one in
the chain, as the two policies that comes first will output content to the response. When the second gets
a change to run its content phase, the request will already be sent to the client, so it will not output
anything to the response.

4.1.17.1. Routing rules

If multiple rules exist, it will apply the first match. The rules will be ordered.

If no rules apply, it will apply upstream, so the policy will work in combination with APIcast policy,
which gets the upstream from the service config, which is a private base URL.

4.1.17.2. Request path rule

This is a configuration that routes to http://example.com when the path is /accounts:

{
 "name": "routing",
 "version": "builtin",

Red Hat 3scale API Management 2.6 Administering the API Gateway

40

http://example.com

 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/accounts"
 }
]
 }
 }
]
 }
 }

4.1.17.3. Header rule

This is a configuration that routes to http://example.com when the value of the header Test-Header is
123:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [
 {
 "match": "header",
 "header_name": "Test-Header",
 "op": "==",
 "value": "123"
 }
]
 }
 }
]
 }
 }

4.1.17.4. Query argument rule

This is a configuration that routes to http://example.com when the value of the query argument
test_query_arg is 123:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {

CHAPTER 4. APICAST POLICIES

41

http://example.com
http://example.com

 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [
 {
 "match": "query_arg",
 "query_arg_name": "test_query_arg",
 "op": "==",
 "value": "123"
 }
]
 }
 }
]
 }
 }

4.1.17.5. JWT claim rule

To route based on the value of a JWT claim, there needs to be a policy in the chain that validates the
JWT and stores it in the context that the policies share.

This is a configuration that routes to http://example.com when the value of the JWT claim test_claim is
123:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [
 {
 "match": "jwt_claim",
 "jwt_claim_name": "test_claim",
 "op": "==",
 "value": "123"
 }
]
 }
 }
]
 }
 }

4.1.17.6. Multiple operations rule

Rules can have multiple operations and route to the given upstream only when all of them evaluate to
true (using the 'and' combine_op), or when at least one of them evaluates to true (using the 'or'
combine_op). The default value of combine_op is 'and'.

This is a configuration that routes to http://example.com when the path of the request is /accounts and

Red Hat 3scale API Management 2.6 Administering the API Gateway

42

http://example.com

This is a configuration that routes to http://example.com when the path of the request is /accounts and
when the value of the header Test-Header is 123:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "combine_op": "and",
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/accounts"
 },
 {
 "match": "header",
 "header_name": "Test-Header",
 "op": "==",
 "value": "123"
 }
]
 }
 }
]
 }
 }

This is a configuration that routes to http://example.com when the path of the request is /accounts or
when the value of the header Test-Header is 123:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "combine_op": "or",
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/accounts"
 },
 {
 "match": "header",
 "header_name": "Test-Header",
 "op": "==",
 "value": "123"
 }

CHAPTER 4. APICAST POLICIES

43

http://example.com
http://example.com

]
 }
 }
]
 }
 }

4.1.17.7. Combining rules

Rules can be combined. When there are several rules, the upstream selected is one of the first rules that
evaluates to true.

This is a configuration with several rules:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://some_upstream.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/accounts"
 }
]
 }
 },
 {
 "url": "http://another_upstream.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/users"
 }
]
 }
 }
]
 }
 }

4.1.17.8. Catch-all rules

A rule without operations always matches. This can be useful to define catch-all rules.

This configuration routes the request to http://some_upstream.com if the path is /abc, routes the
request to http://another_upstream.com if the path is /def, and finally, routes the request to
http://default_upstream.com if none of the previous rules evaluated to true:

Red Hat 3scale API Management 2.6 Administering the API Gateway

44

http://some_upstream.com
http://another_upstream.com
http://default_upstream.com

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://some_upstream.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/abc"
 }
]
 }
 },
 {
 "url": "http://another_upstream.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/def"
 }
]
 }
 },
 {
 "url": "http://default_upstream.com",
 "condition": {
 "operations": []
 }
 }
]
 }
 }

4.1.17.9. Supported operations

The supported operations are ==, !=, and matches. The latter matches a string with a regular expression
and it is implemented using ngx.re.match

This is a configuration that uses !=. It routes to http://example.com when the path is not /accounts:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [

CHAPTER 4. APICAST POLICIES

45

https://github.com/openresty/lua-nginx-module#ngxrematch
http://example.com

 {
 "match": "path",
 "op": "!=",
 "value": "/accounts"
 }
]
 }
 }
]
 }
 }

4.1.17.10. Liquid templating

It is possible to use liquid templating for the values of the configuration. This allows you to define rules
with dynamic values if a policy in the chain stores the key my_var in the context.

This is a configuration that uses that value to route the request:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "url": "http://example.com",
 "condition": {
 "operations": [
 {
 "match": "header",
 "header_name": "Test-Header",
 "op": "==",
 "value": "{{ my_var }}",
 "value_type": "liquid"
 }
]
 }
 }
]
 }
 }

4.1.17.11. Set the host used in the Host header

By default, when a request is routed, the policy sets the Host header using the host of the URL of the
rule that matched. It is possible to specify a different host with the host_header attribute.

This is a configuration that specifies some_host.com as the host of the Host header:

{
 "name": "routing",
 "version": "builtin",
 "configuration": {
 "rules": [

Red Hat 3scale API Management 2.6 Administering the API Gateway

46

 {
 "url": "http://example.com",
 "host_header": "some_host.com",
 "condition": {
 "operations": [
 {
 "match": "path",
 "op": "==",
 "value": "/"
 }
]
 }
 }
]
 }
 }

4.1.18. SOAP policy

The SOAP policy matches SOAP action URIs provided in the SOAPAction or Content-Type header of
an HTTP request with mapping rules specified in the policy.

Configuration properties

property description values required?

pattern The pattern property
allows you to specify a
string that APIcast will
seek matches for in the
SOAPAction URI.

data type: string yes

metric_system_name The
metric_system_nam
e property allows you to
specify the 3scale
backend metric with
which your matched
pattern will register a hit.

data type: string, must
be a valid metric

yes

Policy object example

{
 "name": "soap",
 "version": "builtin",
 "configuration": {
 "mapping_rules": [
 {
 "pattern": "http://example.com/soap#request",
 "metric_system_name": "soap",
 "delta": 1
 }

CHAPTER 4. APICAST POLICIES

47

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383528
https://www.w3.org/TR/soap12-part2/#ActionFeature
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/access_control/api-definition-methods-metrics

]
 }
}

For information on how to configure policies, refer to the Creating a policy chain section of the
documentation.

4.1.19. TLS Client Certificate Validation policy

4.1.19.1. About TLS Client Certificate Validation policy

With the TLS Client Certificate Validation policy, APIcast implements a TLS handshake and validates
the client certificate against a whitelist. A whitelist contains certificates signed by the Certified Authority
(CA) or just plain client certificates. In case of an expired or invalid certificate, the request is rejected and
no other policies will be processed.

The client connects to APIcast to send a request and provides a Client Certificate. APIcast verifies the
authenticity of the provided certificate in the incoming request according to the policy configuration.
APIcast can also be configured to use a client certificate of its own to use it when connecting to the
upstream.

4.1.19.2. Setting up APIcast to work with TLS Client Certificate Validation

APIcast needs to be configured to terminate TLS. Follow the steps below to configure the validation of
client certificates provided by users on APIcast with the Client Certificate Validation policy.

4.1.19.2.1. Prerequisites:

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.19.2.2. Setting up APIcast to work with the policy

To set up APIcast and configure it to terminate TLS, follow these steps:

1. You need to get the access token and deploy APIcast self-managed, as indicated in Deploying
APIcast using the OpenShift template.

NOTE

APIcast self-managed deployment is required as the APIcast instance needs to
be reconfigured to use some certificates for the whole gateway.

2. For testing purposes only, you can use the lazy loader with no cache and staging environment
and --param flags for the ease of testing

oc new-app -f https://raw.githubusercontent.com/3scale/3scale-amp-openshift-
templates/master/apicast-gateway/apicast.yml --param CONFIGURATION_LOADER=lazy --
param DEPLOYMENT_ENVIRONMENT=staging --param CONFIGURATION_CACHE=0

3. Generate certificates for testing purposes. Alternatively, for production deployment, you can
use the certificates provided by a Certificate Authority.

Red Hat 3scale API Management 2.6 Administering the API Gateway

48

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/installing_3scale/installing-apicast#deploying_apicast_using_the_openshift_template

4. Create a Secret with TLS certificates

oc create secret tls apicast-tls
--cert=ca/certs/server.crt
--key=ca/keys/server.key

5. Mount the Secret inside the APIcast deployment

oc set volume dc/apicast --add --name=certificates --mount-path=/var/run/secrets/apicast --
secret-name=apicast-tls

6. Configure APIcast to start listening on port 8443 for HTTPS

oc set env dc/apicast APICAST_HTTPS_PORT=8443
APICAST_HTTPS_CERTIFICATE=/var/run/secrets/apicast/tls.crt
APICAST_HTTPS_CERTIFICATE_KEY=/var/run/secrets/apicast/tls.key

7. Expose 8443 on the Service

oc patch service apicast -p '{"spec":{"ports":[{"name":"https","port":8443,"protocol":"TCP"}]}}'

8. Delete the default route

oc delete route api-apicast-staging

9. Expose the apicast service as a route

oc create route passthrough --service=apicast --port=https --hostname=api-3scale-apicast-
staging.$WILDCARD_DOMAIN

NOTE

This step is needed for every API you are going to use and the domain changes
for every API.

10. Verify that the previously deployed gateway works and the configuration was saved, by
specifying [Your_user_key] in the placeholder.

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN?user_key=[Your_user_key] -v
--cacert ca/certs/ca.crt

4.1.19.3. Configuring TLS Client Certificate Validation in your policy chain

4.1.19.3.1. Prerequisites

You need 3scale login credentials.

You need to have configured APIcast with the TLS Client Certificate Validation policy .

4.1.19.3.2. Configuring the policy

1. To add the TLS Client Certificate Validation policy to your API, follow the steps described in

CHAPTER 4. APICAST POLICIES

49

1. To add the TLS Client Certificate Validation policy to your API, follow the steps described in
Enabling a standard Policy and choose TLS Client Certificate Validation.

2. Click the TLS Client Certificate Validation link.

3. To enable the policy, select the Enabled checkbox.

4. To add certificates to the whitelist, click the plus + icon.

5. Specify the certificate including -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----
-.

6. When you have finished setting up your API with TLS Client Certificate Validation, click Update
Policy.

Additionally:

You can add more certificates by clicking the plus + icon.

You can also reorganize the certificates by clicking the up and down arrows.

To save your changes, click Update & test in Staging Environment.

4.1.19.4. Verifying functionality of the TLS Client Certificate Validation policy

4.1.19.4.1. Prerequisites:

You need 3scale login credentials.

You need to have configured APIcast with the TLS Client Certificate Validation policy .

4.1.19.4.2. Verifying policy functionality

You can verify the applied policy by specifying [Your_user_key] in the placeholder.

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt --cert ca/certs/client.crt --key ca/keys/client.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt --cert ca/certs/server.crt --key ca/keys/server.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt

4.1.19.5. Removing a certificate from the whitelist

4.1.19.5.1. Prerequisites

You need 3scale login credentials.

You need to have set up APIcast with the TLS Client Certificate Validation policy .

You need to have added the certificate to the whitelist, by configuring TLS Client Certificate
Validation in your policy chain.

Red Hat 3scale API Management 2.6 Administering the API Gateway

50

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway#enablePolicy

4.1.19.5.2. Removing a certificate

1. Click the TLS Client Certificate Validation link.

2. To remove certificates from the whitelist, click the x icon.

3. When you have finished removing the certificates, click Update Policy.

To save your changes, click Update & test in Staging Environment.

4.1.19.6. Reference material

For more information about working with certificates, you can refer to Red Hat Certificate System .

4.1.20. Upstream policy

The Upstream policy allows you to parse the Host request header using regular expressions and replace
the upstream URL defined in the Private Base URL with a different URL.

For Example:

A policy with a regex /foo, and URL field newexample.com would replace the URL
https://www.example.com/foo/123/ with newexample.com

Policy chain reference:

property description values required?

regex The regex property
allows you to specify the
regular expression that
the Upstream policy will
use when searching for a
match with the request
path.

data type: string, Must
be a valid regular
expression syntax

yes

url Using the url property,
you can specify the
replacement URL in the
event of a match. Note
that the upstream policy
does not check whether
or not this URL is valid.

data type: string, ensure
this is a valid URL

yes

Policy object example

{
 "name": "upstream",
 "version": "builtin",
 "configuration": {
 "rules": [
 {
 "regex": "^/v1/.*",

CHAPTER 4. APICAST POLICIES

51

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/
https://www.example.com/foo/123/

 "url": "https://api-v1.example.com",

 }
]
 }
}

For information on how to configure policies, refer to the Creating a policy chain section of the
documentation.

4.1.21. Upstream Connection policy

4.1.21.1. About Upstream Connection policy

The Upstream Connection policy allows you to change the default values of the following directives, for
each API, depending on how you have configured the API back end server in your 3scale installation:

proxy_connect_timeout

proxy_send_timeout

proxy_read_timeout

4.1.21.2. Configuring Upstream Connection in your policy chain

4.1.21.2.1. Prerequisites:

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.21.2.2. Configuring the policy

1. To add the Upstream Connection policy to your API, follow the steps described in Enabling a
standard Policy and choose Upstream connection.

2. Click the Upstream connection link.

3. To enable the policy, select the Enabled checkbox.

4. Configure the options for the connections to the upstream:

send_timeout

connect_timeout

read_timeout

5. When you have finished setting up your API with Upstream connection, click Update Policy.

To save your changes, click Update & test in Staging Environment.

4.1.22. URL Rewriting policy

The URL Rewriting policy allows you to modify the path of a request and the query string.

Red Hat 3scale API Management 2.6 Administering the API Gateway

52

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/administering_the_api_gateway#enablePolicy

When combined with the 3scale APIcast policy, if the URL rewriting policy is placed before the 3scale
APIcast policy in the policy chain, the APIcast mapping rules will apply to the modified path. If the URL
rewriting policy is placed after APIcast in the policy chain, then the mapping rules will apply to the
original path.

The policy supports the following two sets of operations:

commands: List of commands to be applied to rewrite the path of the request.

query_args_commands: List of commands to be applied to rewrite the query string of the
request.

4.1.22.1. Commands for rewriting the path

Following are the configuration parameters that each command in the commands list consists of:

op: Operation to be applied. The options available are: sub and gsub. The sub operation
replaces only the first occurrence of a match with your specified regular expression. The gsub
operation replaces all occurrences of a match with your specified regular expression. See the
documentation for the sub and gsub operations.

regex: Perl-compatible regular expression to be matched.

replace: Replacement string that is used in the event of a match.

options (optional): Options that define how the regex matching is performed. For information
on available options, see the ngx.re.match section of the OpenResty Lua module project
documentation.

break (optional): When set to true (checkbox enabled), if the command rewrote the URL, it will
be the last one applied (all posterior commands in the list will be discarded).

4.1.22.2. Commands for rewriting the query string

Following are configuration parameters that each command in the query_args_commands list consists
of:

op: Operation to be applied to the query arguments. The following options are available:

add: Add a value to an existing argument.

set: Create the arg when not set and replace its value when set.

push: Create the arg when not set and add the value when set.

delete: Delete an arg.

arg: The query argument name that the operation is applied on.

value: Specifies the value that is used for the query argument. For value type "liquid" the value
should be in the format {{ variable_from_context }}. For the delete operation the value is not
taken into account.

value_type (optional): Defines how the query argument value is evaluated and can either be
plain for plain text or liquid for evaluation as a Liquid template. For more information, see

CHAPTER 4. APICAST POLICIES

53

https://github.com/openresty/lua-nginx-module#ngxresub
https://github.com/openresty/lua-nginx-module#ngxregsub
https://github.com/openresty/lua-nginx-module#ngxrematch

Section 5.1, “Using variables and filters in policies” . If not specified, the type "plain" is used by
default.

Example

The URL Rewriting policy is configured as follows:

{
 "name": "url_rewriting",
 "version": "builtin",
 "configuration": {
 "query_args_commands": [
 {
 "op": "add",
 "arg": "addarg",
 "value_type": "plain",
 "value": "addvalue"
 },
 {
 "op": "delete",
 "arg": "user_key",
 "value_type": "plain",
 "value": "any"
 },
 {
 "op": "push",
 "arg": "pusharg",
 "value_type": "plain",
 "value": "pushvalue"
 },
 {
 "op": "set",
 "arg": "setarg",
 "value_type": "plain",
 "value": "setvalue"
 }
],
 "commands": [
 {
 "op": "sub",
 "regex": "^/api/v\\d+/",
 "replace": "/internal/",
 "options": "i"
 }
]
 }

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?
user_key=abc123secret&pusharg=first&setarg=original

The URI that APIcast sends to the API backend after applying the URL rewriting:

Red Hat 3scale API Management 2.6 Administering the API Gateway

54

https://api-backend.example.com/internal/products/123/details?
pusharg=first&pusharg=pushvalue&setarg=setvalue

The following transformations are applied:

1. The substring /api/v1/ matches the only path rewriting command and it is replaced by /internal/.

2. user_key query argument is deleted.

3. The value pushvalue is added as an additional value to the pusharg query argument.

4. The value original of the query argument setarg is replaced with the configured value setvalue.

5. The command add was not applied because the query argument addarg is not present in the
original URL.

For information on how to configure policies, see the Creating a policy chain section of the
documentation.

4.1.23. URL Rewriting with Captures policy

The URL Rewriting with Captures policy is an alternative to the Section 4.1.22, “URL Rewriting policy”
policy and allows rewriting the URL of the API request before passing it to the API backend.

The URL Rewriting with Captures policy retrieves arguments in the URL and uses their values in the
rewritten URL.

The policy supports the transformations configuration parameter. It is a list of objects that describe
which transformations are applied to the request URL. Each tranformation object consist of two
properties:

match_rule: This rule is matched to the incoming request URL. It can contain named arguments
in the {nameOfArgument} format; these arguments can be used in the rewritten URL. The URL
is compared to match_rule as a regular expression. The value that matches named arguments
must contain only the following characters (in PCRE regex notation): [\w-.~%!$&'()*,;=@:].
Other regex tokens can be used in the match_rule expression, such as ^ for the beginning of
the string and $ for the end of the string.

template: The template for the URL that the original URL is rewritten with; it can use named
arguments from the match_rule.

The query parameters of the original URL are merged with the query parameters specified in the
template.

Example

The URL Rewriting with Captures is configured as follows:

{
 "name": "rewrite_url_captures",
 "version": "builtin",
 "configuration": {
 "transformations": [
 {
 "match_rule": "/api/v1/products/{productId}/details",

CHAPTER 4. APICAST POLICIES

55

 "template": "/internal/products/details?id={productId}&extraparam=anyvalue"
 }
]
 }
}

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?user_key=abc123secret

The URI that APIcast sends to the API backend after applying the URL rewriting:

https://api-backend.example.com/internal/products/details?
user_key=abc123secret&extraparam=anyvalue&id=123

4.2. ENABLING A STANDARD POLICY

Perform the following steps to enable policies in the Admin Portal:

1. Log in to 3scale.

2. Navigate to the API service.

3. From [your_API_name] > Integration > Configuration, select edit APIcast configuration.

4. Under the POLICIES section, click add policy.

5. Select the policy you want to add and fill out the required fields.

6. Click the Update and test in Staging Environment button to save the policy chain.

4.3. CREATING CUSTOM APICAST POLICIES

You can create custom APIcast policies entirely or modify the standard policies.

In order to create custom policies, you must understand the following:

Policies are written in Lua.

Policies must adhere to and be placed in the proper file directory.

Policy behavior is affected by how they are placed in a policy chain.

The interface to add custom policies is fully supported, but not the custom policies themselves.

4.4. ADDING CUSTOM POLICIES TO APICAST

If you have created custom policies, you must add them to APIcast. How you do this depends on where
APIcast is deployed.

You can add custom policies to the following APIcast self-managed deployments:

APIcast built-in gateways as part of a 3scale on-premises deployment on OpenShift

Red Hat 3scale API Management 2.6 Administering the API Gateway

56

APIcast on OpenShift and the Docker containerized environment

You cannot add custom policies to APIcast hosted.

WARNING

Never make policy changes directly onto a production gateway. Always test your
changes.

4.4.1. Adding custom policies to the built-in APIcast

To add custom APIcast policies to an on-premises deployment, you must build an OpenShift image
containing your custom policies and add it to your deployment. Red Hat 3scale provides a sample
repository you can use as a framework to create and add custom policies to an on-premises deployment.

This sample repository contains the correct directory structure for a custom policy, as well as a template
which creates an image stream and BuildConfigs for building a new APIcast OpenShift image containing
any custom policies you create.

WARNING

When you build apicast-custom-policies, the build process "pushes" a new image
to the amp-apicast:latest tag. When there is an image change on this image
stream tag (:latest), both the apicast-staging and the apicast-production tags, by
default, are configured to automatically start new deployment. To avoid any
disruptions to your production service (or staging, if you prefer) it is recommended
to disable automatic deployment ("Automatically start a new deployment when the
image changes" checkbox), or configure a different image stream tag for
production (e.g. amp-apicast:production).

Follow these steps to add a custom policy to an on-premises deployment:

1. Fork the https://github.com/3scale/apicast-example-policy [public repository with the policy
example] or create a private repository with its content. You need to have the code of your
custom policy available in a Git repository for OpenShift to build the image. Note that in order to
use a private Git repository, you must set up the secrets in OpenShift.

2. Clone the repository locally, add the implementation for your policy, and push the changes to
your Git repository.

3. Update the openshift.yml template. Specifically, change the following parameters:

a. spec.source.git.uri: https://github.com/3scale/apicast-example-policy.git in the policy
BuildConfig – change it to your Git repository location.

b. spec.source.images[0].paths.sourcePath: /opt/app-root/policies/example in the custom





CHAPTER 4. APICAST POLICIES

57

https://github.com/3scale/apicast-example-policy
https://github.com/3scale/apicast-example-policy.git

b. spec.source.images[0].paths.sourcePath: /opt/app-root/policies/example in the custom
policies BuildConfig - change example to the name of the custom policy that you have
added under the policies directory in the repository.

c. Optionally, update the OpenShift object names and image tags. However, you must ensure
that the changes are coherent (example: apicast-example-policy BuildConfig builds and
pushes the apicast-policy:example image that is then used as a source by the apicast-
custom-policies BuildConfig. So, the tag should be the same).

4. Create the OpenShift objects by running the command:

oc new-app -f openshift.yml --param AMP_RELEASE=2.6.0

5. In case the builds do not start automatically, run the following two commands. In case you
changed it, replace apicast-example-policy with your own BuildConfig name (e.g. apicast-
<name>-policy). Wait for the first command to complete before you execute the second one.

oc start-build apicast-example-policy
oc start-build apicast-custom-policies

If the build-in APIcast images have a trigger on them tracking the changes in the amp-apicast:latest
image stream, the new deployment for APIcast will start. After apicast-staging has restarted, go to the
Integration page on the admin portal, and click the Add Policy button to see your custom policy listed.
After selecting and configuring it, click Update & test in Staging Environment to make your custom
policy work in the staging APIcast.

4.4.2. Adding custom policies to APIcast on another OpenShift Container Platform

You can add custom policies to APIcast on OpenShift Container Platform (OCP) by fetching APIcast
images containing your custom policies from the Integrated OpenShift Container Platform registry .

Add custom policies to APIcast on another OpenShift Container Platform

1. Add policies to APIcast built-in

2. If you are not deploying your APIcast gateway on your primary OpenShift cluster, establish
access to the internal registry on your primary OpenShift cluster.

3. Download the 3scale 2.6 APIcast OpenShift template.

4. To modify the template, replace the default image directory with the full image name in your
internal registry.

image: <registry>/<project>/amp-apicast:latest

5. Deploying APIcast using the OpenShift template , specifying your customized image:

oc new-app -f customizedApicast.yml

NOTE

Red Hat 3scale API Management 2.6 Administering the API Gateway

58

https://docs.openshift.com/container-platform/4.1/registry/registry-options.html#registry-integrated-openshift-registry_registry-options
https://docs.openshift.com/container-platform/4.1/registry/accessing-the-registry.html
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/2.6.0.GA/apicast-gateway/apicast.yml
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/installing_3scale/installing-apicast#deploying_apicast_using_the_openshift_template

NOTE

When custom policies are added to APIcast and a new image is built, those policies are
automatically displayed as available in the Admin Portal when APIcast is deployed with the
image. Existing services can see this new policy in the list of available policies, so it can be
used in any policy chain.

When a custom policy is removed from an image and APIcast is restarted, the policy will
no longer be available in the list, so you can no longer add it to a policy chain.

4.5. CREATING A POLICY CHAIN IN 3SCALE

Create a policy chain in 3scale as part of your APIcast gateway configuration. Follow these steps to
modify the policy chain in the UI:

1. Log in to your AMP

2. Navigate to the API service

3. From [your_API_name] > Integration > Configuration, select edit APIcast configuration

4. Under the POLICIES section, use the arrow icons to reorder policies in the policy chain. Always

CHAPTER 4. APICAST POLICIES

59

4. Under the POLICIES section, use the arrow icons to reorder policies in the policy chain. Always
place the APIcast policy last in the policy chain.

5. Click the Update and test in Staging Environment button to save the policy chain

4.6. CREATING A POLICY CHAIN JSON CONFIGURATION FILE

If you are using a native deployment of APIcast, you can create a JSON configuration file to control your
policy chain outside of the AMP.

A JSON configuration file policy chain contains a JSON array composed of the following information:

the services object with an id value that specifies which service the policy chain applies to by
number

the proxy object, which contains the policy_chain and subsequent objects

the policy_chain object, which contains the values that define the policy chain

individual policy objects which specify both name and configuration data necessary to
identify the policy and configure policy behavior

The following is an example policy chain for a custom policy sample_policy_1 and the API introspection
standard policy token_introspection:

{
 "services":[
 {
 "id":1,
 "proxy":{
 "policy_chain":[
 {
 "name":"sample_policy_1", "version": "1.0",
 "configuration":{
 "sample_config_param_1":["value_1"],
 "sample_config_param_2":["value_2"]
 }
 },
 {
 "name": "token_introspection", "version": "builtin",
 "configuration": {
 introspection_url:["https://tokenauthorityexample.com"],
 client_id:["exampleName"],
 client_secret:["secretexamplekey123"]
 },

Red Hat 3scale API Management 2.6 Administering the API Gateway

60

 {
 "name": "apicast", "version": "builtin",
 }
]
 }
 }
]
}

All policy chains must include the built-in policy apicast. Where you place APIcast in the policy chain will
affect policy behavior.

CHAPTER 4. APICAST POLICIES

61

CHAPTER 5. INTEGRATING A POLICY CHAIN WITH APICAST
NATIVE DEPLOYMENTS

For native APIcast deployments, you can integrate a custom policy chain by specifying a configuration
file using the THREESCALE_CONFIG_FILE environment variable. The following example specifies the
config file example.json:

THREESCALE_CONFIG_FILE=example.json bin/apicast

5.1. USING VARIABLES AND FILTERS IN POLICIES

Some Section 4.1, “APIcast standard policies” support Liquid templating that allows using not only plain
string values, but also variables that are present in the context of the request.

To use a context variable, wrap its name in {{ and }}, example: {{ uri }}. If the variable is an object, you
can also access its attributes, for example: {{ somevar.attr }}.

Following are the standard variables that are available in all the policies:

uri: The path of the request without query parameters (the value of the embedded NGINX
variable $uri).

host: The host of the request (the value of the embedded NGINX variable $host).

remote_addr: The IP address of the client (the value of the embedded NGINX variable
$remote_addr).

headers: The object containing the request headers. Use {{headers['Some-Header']}} to get a
specific header value.

http_method: The request method: GET, POST, etc.

The variables are available in the context of the request. Policies can add extra variables to the context.
These variables can be used by the same or other policies in the policy chain, provided that the phase
where they are used is executed after the phase where the variable was added. It can also be the same
phase if the variable is used in the policy that appears after the policy in which the variable was added.

Following are some examples of variables that the standard 3scale APIcast policy adds to the context:

jwt: A parsed JSON payload of the JWT token (for OpenID Connect authentication).

credentials: An object that holds the application credentials. Example: "app_id": "972f7b4f",
"user_key": "13b668c4d1e10eaebaa5144b4749713f".

service: An object that holds the configuration for the service that the current request is
handled by. Example: the service ID would be available as {{ service.id }}.

For a full list of objects and values available in the context, see the Section 4.1.10, “Liquid Context
Debug policy”).

The variables are used with the help of Liquid templates. Example: {{ remote_addr }}, {{
headers['Some-Header'] }}, {{ jwt.aud }}. The policies that support variables for the values have a
special parameter, usually with the _type suffix (example: value_type, name_type, etc.) that accepts
two values: "plain" for plain text and "liquid" for liquid template.

Red Hat 3scale API Management 2.6 Administering the API Gateway

62

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_uri
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_host
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_remote_addr

APIcast also supports Liquid filters that can be applied to the variables' values. The filters apply NGINX
functions to the value of the Liquid variable.

The filters are placed within the variable output tag {{ }}, following the name of the variable or the literal
value by a pipe character | and the name of the filter. Examples: {{ 'username:password' |
encode_base64 }}, {{ uri | escape_uri }}.

Some filters do not require parameters, so you can use an empty string instead of the variable. Example:
{{ '' | utctime }} will return the current time in UTC time zone.

Filters can be chained as follows: {{ variable | function1 | function2 }}. Example: {{ '' | utctime |
escape_uri }}.

Following is the list of the available functions:

escape_uri

unescape_uri

encode_base64

decode_base64

crc32_short

crc32_long

hmac_sha1

md5

md5_bin

sha1_bin

quote_sql_str

today

time

now

localtime

utctime

cookie_time

http_time

parse_http_time

CHAPTER 5. INTEGRATING A POLICY CHAIN WITH APICAST NATIVE DEPLOYMENTS

63

https://github.com/openresty/lua-nginx-module#ngxescape_uri
https://github.com/openresty/lua-nginx-module#ngxunescape_uri
https://github.com/openresty/lua-nginx-module#ngxencode_base64
https://github.com/openresty/lua-nginx-module#ngxdecode_base64
https://github.com/openresty/lua-nginx-module#ngxcrc32_short
https://github.com/openresty/lua-nginx-module#ngxcrc32_long
https://github.com/openresty/lua-nginx-module#ngxhmac_sha1
https://github.com/openresty/lua-nginx-module#ngxmd5
https://github.com/openresty/lua-nginx-module#ngxmd5_bin
https://github.com/openresty/lua-nginx-module#ngxsha1_bin
https://github.com/openresty/lua-nginx-module#ngxquote_sql_str
https://github.com/openresty/lua-nginx-module#ngxtoday
https://github.com/openresty/lua-nginx-module#ngxtime
https://github.com/openresty/lua-nginx-module#ngxnow
https://github.com/openresty/lua-nginx-module#ngxlocaltime
https://github.com/openresty/lua-nginx-module#ngxutctime
https://github.com/openresty/lua-nginx-module#ngxcookie_time
https://github.com/openresty/lua-nginx-module#ngxhttp_time
https://github.com/openresty/lua-nginx-module#ngxparse_http_time

CHAPTER 6. APICAST ENVIRONMENT VARIABLES
APIcast environment variables allow you to modify behavior for APIcast. The following values are
supported environment variables:

NOTE

Unsupported or deprecated environment variables are not listed

Some environment variable functionality may have moved to APIcast policies

APICAST_BACKEND_CACHE_HANDLER

APICAST_CONFIGURATION_CACHE

APICAST_CONFIGURATION_LOADER

APICAST_CUSTOM_CONFIG

APICAST_ENVIRONMENT

APICAST_EXTENDED_METRICS

APICAST_LOG_FILE

APICAST_LOG_LEVEL

APICAST_ACCESS_LOG_FILE

APICAST_OIDC_LOG_LEVEL

APICAST_MANAGEMENT_API

APICAST_MODULE

APICAST_PATH_ROUTING

APICAST_POLICY_LOAD_PATH

APICAST_PROXY_HTTPS_CERTIFICATE_KEY

APICAST_PROXY_HTTPS_CERTIFICATE

APICAST_PROXY_HTTPS_PASSWORD_FILE

APICAST_PROXY_HTTPS_SESSION_REUSE

APICAST_HTTPS_VERIFY_DEPTH

APICAST_REPORTING_THREADS

APICAST_RESPONSE_CODES

APICAST_SERVICES_LIST_URL

APICAST_SERVICES_LIST

Red Hat 3scale API Management 2.6 Administering the API Gateway

64

APICAST_UPSTREAM_RETRY_CASES

APICAST_SERVICE_${ID}_CONFIGURATION_VERSION

APICAST_WORKERS

BACKEND_ENDPOINT_OVERRIDE

OPENSSL_VERIFY

RESOLVER

THREESCALE_CONFIG_FILE

THREESCALE_DEPLOYMENT_ENV

THREESCALE_PORTAL_ENDPOINT

OPENTRACING_TRACER

OPENTRACING_CONFIG

OPENTRACING_HEADER_FORWARD

APICAST_HTTPS_PORT

APICAST_HTTPS_CERTIFICATE

APICAST_HTTPS_CERTIFICATE_KEY

all_proxy ALL_PROXY

http_proxy HTTP_PROXY

https_proxy HTTPS_PROXY

no_proxy NO_PROXY

APICAST_BACKEND_CACHE_HANDLER
Values: strict | resilient

Default: strict

Deprecated: Use the Caching policy instead.

Defines how the authorization cache behaves when backend is unavailable. Strict will remove cached
application when backend is unavailable. Resilient will do so only on getting authorization denied from
backend.

APICAST_CONFIGURATION_CACHE
Values: a number

Default: 0

Specifies the interval (in seconds) that the configuration will be stored for. The value should be set to 0
(not compatible with boot value of APICAST_CONFIGURATION_LOADER) or more than 60. For
example, if APICAST_CONFIGURATION_CACHE is set to 120, the gateway will reload the

CHAPTER 6. APICAST ENVIRONMENT VARIABLES

65

https://github.com/3scale/apicast/blob/3.3-stable/gateway/src/apicast/policy/caching/apicast-policy.json

configuration from the API manager every 2 minutes (120 seconds). A value < 0 disables reloading.

APICAST_CONFIGURATION_LOADER
Values: boot | lazy

Default: lazy

Defines how to load the configuration. Boot will request the configuration to the API manager when the
gateway starts. Lazy will load it on demand for each incoming request (to guarantee a complete refresh
on each request APICAST_CONFIGURATION_CACHE should be 0).

APICAST_CUSTOM_CONFIG
Deprecated: Use policies instead.

Defines the name of the Lua module that implements custom logic overriding the existing APIcast logic.

APICAST_ENVIRONMENT
Default:

Value: string[:]

Example: production:cloud-hosted

Double colon (:) separated list of environments (or paths) APIcast should load. It can be used instead of
-e or ---environment parameter on the CLI and for example stored in the container image as default
environment. Any value passed on the CLI overrides this variable.

APICAST_EXTENDED_METRICS
Default: false

Value: boolean

Example: "true"

Enables additional information on Prometheus metrics. The following metrics have the service_id and
service_system_name labels which provide more in-depth details about APIcast:

total_response_time_seconds

upstream_response_time_seconds

upstream_status

APICAST_LOG_FILE
Default: stderr

Defines the file that will store the OpenResty error log. It is used by bin/apicast in the error_log
directive. Refer to NGINX documentation for more information. The file path can be either absolute, or
relative to the prefix directory (apicast by default).

APICAST_LOG_LEVEL
Values: debug | info | notice | warn | error | crit | alert | emerg

Default: warn

Specifies the log level for the OpenResty logs.

Red Hat 3scale API Management 2.6 Administering the API Gateway

66

https://github.com/3scale/apicast/blob/3.3-stable/doc/policies.md
http://nginx.org/en/docs/ngx_core_module.html#error_log

APICAST_ACCESS_LOG_FILE
Default: stdout

Defines the file that will store the access logs.

APICAST_OIDC_LOG_LEVEL
Values: debug | info | notice | warn | error | crit | alert | emerg

Default: err

Allows to set the log level for the logs related to OpenID Connect integration.

APICAST_MANAGEMENT_API
Values:

disabled: completely disabled, just listens on the port

status: only the /status/ endpoints enabled for health checks

debug: full API is open

The Management API is powerful and can control the APIcast configuration. You should enable the
debug level only for debugging.

APICAST_MODULE
Default: apicast

Deprecated: Use policies instead.

Specifies the name of the main Lua module that implements the API gateway logic. Custom modules
can override the functionality of the default apicast.lua module. See an example of how to use
modules.

APICAST_PATH_ROUTING
Values:

true or 1 for true

false, 0 or empty for false

When this parameter is set to true, the gateway will use path-based routing in addition to the default
host-based routing. The API request will be routed to the first service that has a matching mapping rule,
from the list of services for which the value of the Host header of the request matches the Public Base
URL.

APICAST_POLICY_LOAD_PATH
Default: APICAST_DIR/policies

Value: string[:]

Example: ~/apicast/policies:$PWD/policies

Double colon (:) separated list of paths where APIcast should look for policies. It can be used to first load
policies from a development directory or to load examples.

APICAST_PROXY_HTTPS_CERTIFICATE_KEY

CHAPTER 6. APICAST ENVIRONMENT VARIABLES

67

https://github.com/3scale/apicast/blob/3.3-stable/doc/management-api.md
https://github.com/3scale/apicast/blob/3.3-stable/doc/policies.md
https://github.com/3scale/apicast/tree/3.3-stable/examples/custom-module

Default:

Value: string

Example: /home/apicast/my_certificate.key

The path to the key of the client SSL certificate.

APICAST_PROXY_HTTPS_CERTIFICATE
Default:

Value: string

Example: /home/apicast/my_certificate.crt

The path to the client SSL certificate that APIcast will use when connecting with the upstream. Notice
that this certificate will be used for all the services in the configuration.

APICAST_PROXY_HTTPS_PASSWORD_FILE
Default:

Value: string

Example: /home/apicast/passwords.txt

Path to a file with passphrases for the SSL cert keys specified with
APICAST_PROXY_HTTPS_CERTIFICATE_KEY.

APICAST_PROXY_HTTPS_SESSION_REUSE
Default: on

Values:

on: reuses SSL sessions.

off: does not reuse SSL sessions.

APICAST_HTTPS_VERIFY_DEPTH
Default: 1

Values: positive integers.

Defines the maximum length of the client certificate chain. If this parameter has 1 as its value, it implies
that this length might include one additional certificate, for example intermediate CA .

APICAST_REPORTING_THREADS
Default: 0

Value: integer >= 0

Experimental: Under extreme load might have unpredictable performance and lose reports.

Value greater than 0 is going to enable out-of-band reporting to backend. This is a new experimental
feature for increasing performance. Client won’t see the backend latency and everything will be
processed asynchronously. This value determines how many asynchronous reports can be running
simultaneously before the client is throttled by adding latency.

Red Hat 3scale API Management 2.6 Administering the API Gateway

68

APICAST_RESPONSE_CODES
Values:

true or 1 for true

false, 0 or empty for false

Default: <empty> (false)

When set to true, APIcast will log the response code of the response returned by the API backend in
3scale. In some plans this information can later be consulted from the 3scale admin portal. Find more
information about the Response Codes feature on the 3scale support site.

APICAST_SERVICES_LIST_URL
Value: a PCRE (Perl Compatible Regular Expression) such as .*.example.com.

Filters the services configured in the 3scale API Manager.

This filter matches with the public base URL. Services that do not match the filter are discarded. If the
regular expression cannot be compiled, no services are loaded.

NOTE

If a service does not match but is included in APICAST_SERVICES_LIST, the service will
not be discarded.

Example 6.1. example

The Regexp filter http://.*.foo.dev is applied to the following backend endpoints:

1. http://staging.foo.dev

2. http://staging.bar.dev

3. http://prod.foo.dev

4. http://prod.bar.dev

In this case, 1 and 3 are configured in the embedded APIcast and 2 and 4 are discarded.

APICAST_SERVICES_LIST
Value: a comma-separated list of service IDs

Used to filter the services configured in the 3scale API Manager, and only use the configuration for
specific services in the gateway, discarding those services' IDs that are not specified in the list. Service
IDs can be found on the Admin Portal’s Dashboard > APIs page, tagged as ID for API calls .

APICAST_UPSTREAM_RETRY_CASES
Default: error timeout

Values: error | timeout | invalid_header | http_500 | http_502 | http_503 | http_504 | http_403 |
http_404 | http_429 | non_idempotent | off

NOTE

CHAPTER 6. APICAST ENVIRONMENT VARIABLES

69

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.saas/html/analytics/response-codes-tracking
http:
http://staging.foo.dev
http://staging.bar.dev
http://prod.foo.dev
http://prod.bar.dev

NOTE

This is only used when the retry policy is configured and specifies when a request to the
upstream API should be retried. It accepts the same values as Nginx’s
PROXY_NEXT_UPSTREAM Module.

APICAST_SERVICE_${ID}_CONFIGURATION_VERSION
Replace ${ID} with the actual Service ID. The value should be the configuration version you can see in
the configuration history on the Admin Portal. Setting it to a particular version will prevent it from auto-
updating and will always use that version.

APICAST_WORKERS
Default: auto

Values: number | auto

This is the value that will be used in the nginx worker_processes directive. By default, APIcast uses
auto, except for the development environment where 1 is used.

BACKEND_ENDPOINT_OVERRIDE
URI that overrides backend endpoint from the configuration. Useful when deploying outside OpenShift
deployed AMP. Example: https://backend.example.com.

OPENSSL_VERIFY
Values:

0, false: disable peer verification

1, true: enable peer verification

Controls the OpenSSL Peer Verification. It is off by default, because OpenSSL can’t use system
certificate store. It requires custom certificate bundle and adding it to trusted certificates.

It is recommended to use https://github.com/openresty/lua-nginx-module#lua_ssl_trusted_certificate
and point to to certificate bundle generated by export-builtin-trusted-certs.

RESOLVER
Allows to specify a custom DNS resolver that will be used by OpenResty. If the RESOLVER parameter is
empty, the DNS resolver will be autodiscovered.

THREESCALE_CONFIG_FILE
Path to the JSON file with the configuration for the gateway. The configuration can be downloaded
from the 3scale admin portal using the URL: <schema>://<admin-portal-
domain>/admin/api/nginx/spec.json (Example: https://account-
admin.3scale.net/admin/api/nginx/spec.json).

When the gateway is deployed using Docker, the file has to be injected to the docker image as a read
only volume, and the path should indicate where the volume is mounted, i.e. path local to the docker
container.

You can find sample configuration files in examples folder.

It is required to provide either THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE
(takes precedence) for the gateway to run successfully.

Red Hat 3scale API Management 2.6 Administering the API Gateway

70

https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_next_upstream
http://nginx.org/en/docs/ngx_core_module.html#worker_processes
https://backend.example.com
https://github.com/openresty/lua-nginx-module#lua_ssl_trusted_certificate
https://github.com/openresty/openresty-devel-utils/blob/master/export-builtin-trusted-certs
https://account-admin.3scale.net/admin/api/nginx/spec.json
https://github.com/3scale/apicast/tree/master/examples/configuration

THREESCALE_DEPLOYMENT_ENV
Values: staging | production

Default: production

The value of this environment variable will be used to define the environment for which the
configuration will be downloaded from 3scale (Staging or Production), when using new APIcast.

The value will also be used in the header X-3scale-User-Agent in the authorize/report requests made to
3scale Service Management API. It is used by 3scale just for statistics.

THREESCALE_PORTAL_ENDPOINT
URI that includes your password and portal endpoint in the following format:
<schema>://<password>@<admin-portal-domain>. The <password> can be either the provider key
or an access token for the 3scale Account Management API. <admin-portal-domain> is the URL to log
in to the Admin Portal.

Example: https://access-token@account-admin.3scale.net.

When THREESCALE_PORTAL_ENDPOINT environment variable is provided, the gateway will
download the configuration from 3scale on initializing. The configuration includes all the settings
provided on the Integration page of the API(s).

You can also use this environment variable to create a single gateway with the Master Admin Portal .

It is required to provide either THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE
(takes precedence) for the gateway to run successfully.

OPENTRACING_TRACER
Example: jaeger

This environment variable controls which tracing library will be loaded, right now, there’s only one
opentracing tracer available, jaeger.

If empty, opentracing support will be disabled.

OPENTRACING_CONFIG
This environment variable is used to determine the config file for the opentracing tracer, if
OPENTRACING_TRACER is not set, this variable will be ignored.

Each tracer has a default configuration file: * jaeger: conf.d/opentracing/jaeger.example.json

You can choose to mount a different configuration than the provided by default by setting the file path
using this variable.

Example: /tmp/jaeger/jaeger.json

OPENTRACING_HEADER_FORWARD
Default: uber-trace-id

This environment variable controls the HTTP header used for forwarding opentracing information, this
HTTP header will be forwarded to upstream servers.

APICAST_HTTPS_PORT
Default: no value

CHAPTER 6. APICAST ENVIRONMENT VARIABLES

71

https://access-token@account-admin.3scale.net
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/admin_portal_guide/index#creating-gateway

Controls on which port APIcast should start listening for HTTPS connections. If this clashes with HTTP
port it will be used only for HTTPS.

APICAST_HTTPS_CERTIFICATE
Default: no value

Path to a file with X.509 certificate in the PEM format for HTTPS.

APICAST_HTTPS_CERTIFICATE_KEY
Default: no value

Path to a file with the X.509 certificate secret key in the PEM format.

all_proxy, ALL_PROXY
Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to services if a protocol-specific proxy is not specified.
Authentication is not supported.

http_proxy, HTTP_PROXY
Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to HTTP services. Authentication is not supported.

https_proxy, HTTPS_PROXY
Default: no value Value: string Example: https://forward-proxy:443

Defines a HTTP proxy to be used for connecting to HTTPS services. Authentication is not supported.

no_proxy, NO_PROXY
Default: no value Value: string\[,<string>\]; *Example: foo,bar.com,.extra.dot.com

Defines a comma-separated list of hostnames and domain names for which the requests should not be
proxied. Setting to a single * character, which matches all hosts, effectively disables the proxy.

Red Hat 3scale API Management 2.6 Administering the API Gateway

72

http://forward-proxy:80
http://forward-proxy:80
https://forward-proxy:443

CHAPTER 7. CONFIGURING APICAST FOR BETTER
PERFORMANCE

This document provides general guidelines to debug performance issues in APIcast. It also introduces
the available caching modes and explains how they can help in increasing performance, as well as details
about profiling modes. The content is structured in the following sections:

Section 7.1, “General guidelines”

Section 7.2, “Default caching”

Section 7.3, “Asynchronous reporting threads”

Section 7.4, “3scale Batcher policy”

7.1. GENERAL GUIDELINES

In a typical APIcast deployment, there are three components to consider:

APIcast

The 3scale back-end server that authorizes requests and keeps track of the usage

The upstream API

When experiencing performance issues in APIcast:

Identify the component that is responsible for the issues.

Measure the latency of the upstream API, to determine the latency that APIcast plus the 3scale
back-end server introduce.

With the same tool you are using to run the benchmark, perform a new measurement but
pointing to APIcast instead of pointing to the upstream API directly.

Comparing these results will give you an idea of the latency introduced by APIcast and the 3scale back-
end server.

In a Hosted (SaaS) installation with self-managed APIcast, if the latency introduced by APIcast and the
3scale back-end server is high:

1. Make a request to the 3scale back-end server from the same machine where APIcast is
deployed

2. Measure the latency.

The 3scale back-end server exposes an endpoint that returns the version: https://su1.3scale.net/status.
In comparison, an authorization call requires more resources because it verifies keys, limits, and queue
background jobs. Although the 3scale back-end server performs these tasks in a few milliseconds, it
requires more work than checking the version like the /status endpoint does. As an example, if a request
to /status takes around 300 ms from your APIcast environment, an authorization is going to take more
time for every request that is not cached.

7.2. DEFAULT CACHING

CHAPTER 7. CONFIGURING APICAST FOR BETTER PERFORMANCE

73

https://su1.3scale.net/status

For requests that are not cached, these are the events:

1. APIcast extracts the usage metrics from matching mapping rules.

2. APIcast sends the metrics plus the application credentials to the 3scale back-end server.

3. The 3scale back-end server performs the following:

a. Checks the application keys, and that the reported usage of metrics is within the defined
limits.

b. Queues a background job to increase the usage of the metrics reported.

c. Responds to APIcast whether the request should be authorized or not.

4. If the request is authorized, it goes to the upstream.

In this case, the request does not arrive to the upstream until the 3scale back-end server responds.

On the other hand, with the caching mechanism that comes enabled by default:

APIcast stores in a cache the result of the authorization call to the 3scale back-end server if it
was authorized.

The next request with the same credentials and metrics will use that cached authorization
instead of going to the 3scale back-end server.

If the request was not authorized, or if it is the first time that APIcast receives the credentials,
APIcast will call the 3scale back-end server synchronously as explained above.

When the authentication is cached, APIcast first calls the upstream and then, in a phase called post
action, it calls the 3scale back-end server and stores the authorization in the cache to have it ready for
the next request. Notice that the call to the 3scale back-end server does not introduce any latency
because it does not happen in request time. However, requests sent in the same connection will need to
wait until the post action phase finishes.

Imagine a scenario where a client is using keep-alive and sends a request every second. If the upstream
response time is 100 ms and the latency to the 3scale back-end server is 500 ms, the client will get the
response every time in 100 ms. The total of upstream response and the reporting would take 600 ms.
That gives extra 400 ms before the next request comes.

The diagram below illustrates the default caching behavior explained.The behavior of the caching
mechanism can be changed using the caching policy.

Red Hat 3scale API Management 2.6 Administering the API Gateway

74

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_policies#authentication_caching

7.3. ASYNCHRONOUS REPORTING THREADS

APIcast has a feature to enable a pool of threads that authorize against the 3scale back-end server.
With this feature enabled, APIcast first synchronously calls the 3scale back-end server to verify the
application and metrics matched by mapping rules. This is similar to when it uses the caching mechanism
enabled by default. The difference is that subsequent calls to the 3scale back-end server are reported
fully asynchronously as long as there are free reporting threads in the pool.

Reporting threads are global for the whole gateway and shared between all the services. When a second

CHAPTER 7. CONFIGURING APICAST FOR BETTER PERFORMANCE

75

TCP connection is made, it will also be fully asynchronous as long as the authorization is already cached.
When there are no free reporting threads, the synchronous mode falls back to the standard
asynchronous mode and does the reporting in the post action phase.

You can enable this feature using the APICAST_REPORTING_THREADS environment variable.

The diagram below illustrates how the asynchronous reporting thread pool works.

7.4. 3SCALE BATCHER POLICY

By default, APIcast performs one call to the 3scale back-end server for each request that it receives.
The goal of the 3scale Batcher policy is to reduce latency and increase throughput by significantly
reducing the number of requests made to the 3scale back-end server. In order to achieve that, this
policy caches authorization statuses and batches reports.

This document provides details about the 3scale Batcher policy. The diagram below illustrates how the
policy works.

Red Hat 3scale API Management 2.6 Administering the API Gateway

76

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_environment_variables#reporting-threads
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_policies#batcher

CHAPTER 7. CONFIGURING APICAST FOR BETTER PERFORMANCE

77

	Table of Contents
	PREFACE
	CHAPTER 1. OPERATING APICAST
	1.1. MAPPING RULES
	1.1.1. Matching of mapping rules
	1.1.2. Mapping rules workflow

	1.2. HOST HEADER
	1.3. PRODUCTION DEPLOYMENT
	1.4. PUBLIC BASE URL
	1.5. PROTECTING YOUR API BACKEND
	1.6. USING APICAST WITH PRIVATE APIS
	1.7. CONFIGURING APICAST WITH OPENTRACING
	1.7.1. Prerequisites
	1.7.2. Procedure
	1.7.3. Additional information
	1.7.4. Installing Jaeger on your OpenShift instance

	CHAPTER 2. OPERATING DOCKER-CONTAINERIZED ENVIRONMENTS
	2.1. TROUBLESHOOTING APICAST ON THE DOCKER-CONTAINERIZED ENVIRONMENT
	2.1.1. Cannot connect to the Docker daemon error
	2.1.2. Basic Docker command-line interface commands

	CHAPTER 3. ADVANCED APICAST CONFIGURATION
	3.1. DEFINE A SECRET TOKEN
	3.2. CREDENTIALS
	3.3. CONFIGURING ERROR MESSAGES
	3.4. CONFIGURATION HISTORY
	3.5. DEBUGGING
	3.6. PATH ROUTING

	CHAPTER 4. APICAST POLICIES
	4.1. APICAST STANDARD POLICIES
	4.1.1. 3scale Auth Caching policy
	4.1.2. 3scale Batcher policy
	4.1.3. Anonymous Access policy
	4.1.4. CORS Request Handling policy
	4.1.5. Echo policy
	4.1.6. Edge Limiting policy
	4.1.6.1. Types of limits
	4.1.6.2. Limit definition
	4.1.6.3. Liquid templating
	4.1.6.4. Applying conditions
	4.1.6.5. Configuring the store
	4.1.6.6. Error handling

	4.1.7. Header Modification policy
	4.1.8. IP Check policy
	4.1.9. JWT Claim Check policy
	4.1.9.1. About JWT Claim Check policy
	4.1.9.2. Configuring JWT Claim Check policy in your policy chain

	4.1.10. Liquid Context Debug policy
	4.1.11. Logging policy
	4.1.12. OAuth 2.0 Token Introspection policy
	4.1.13. Prometheus metrics
	4.1.14. Referrer policy
	4.1.15. Retry policy
	4.1.16. RH-SSO/Keycloak Role Check policy
	4.1.17. Routing policy
	4.1.17.1. Routing rules
	4.1.17.2. Request path rule
	4.1.17.3. Header rule
	4.1.17.4. Query argument rule
	4.1.17.5. JWT claim rule
	4.1.17.6. Multiple operations rule
	4.1.17.7. Combining rules
	4.1.17.8. Catch-all rules
	4.1.17.9. Supported operations
	4.1.17.10. Liquid templating
	4.1.17.11. Set the host used in the Host header

	4.1.18. SOAP policy
	4.1.19. TLS Client Certificate Validation policy
	4.1.19.1. About TLS Client Certificate Validation policy
	4.1.19.2. Setting up APIcast to work with TLS Client Certificate Validation
	4.1.19.3. Configuring TLS Client Certificate Validation in your policy chain
	4.1.19.4. Verifying functionality of the TLS Client Certificate Validation policy
	4.1.19.5. Removing a certificate from the whitelist
	4.1.19.6. Reference material

	4.1.20. Upstream policy
	4.1.21. Upstream Connection policy
	4.1.21.1. About Upstream Connection policy
	4.1.21.2. Configuring Upstream Connection in your policy chain

	4.1.22. URL Rewriting policy
	4.1.22.1. Commands for rewriting the path
	4.1.22.2. Commands for rewriting the query string

	4.1.23. URL Rewriting with Captures policy

	4.2. ENABLING A STANDARD POLICY
	4.3. CREATING CUSTOM APICAST POLICIES
	4.4. ADDING CUSTOM POLICIES TO APICAST
	4.4.1. Adding custom policies to the built-in APIcast
	4.4.2. Adding custom policies to APIcast on another OpenShift Container Platform

	4.5. CREATING A POLICY CHAIN IN 3SCALE
	4.6. CREATING A POLICY CHAIN JSON CONFIGURATION FILE

	CHAPTER 5. INTEGRATING A POLICY CHAIN WITH APICAST NATIVE DEPLOYMENTS
	5.1. USING VARIABLES AND FILTERS IN POLICIES

	CHAPTER 6. APICAST ENVIRONMENT VARIABLES
	APICAST_BACKEND_CACHE_HANDLER
	APICAST_CONFIGURATION_CACHE
	APICAST_CONFIGURATION_LOADER
	APICAST_CUSTOM_CONFIG
	APICAST_ENVIRONMENT
	APICAST_EXTENDED_METRICS
	APICAST_LOG_FILE
	APICAST_LOG_LEVEL
	APICAST_ACCESS_LOG_FILE
	APICAST_OIDC_LOG_LEVEL
	APICAST_MANAGEMENT_API
	APICAST_MODULE
	APICAST_PATH_ROUTING
	APICAST_POLICY_LOAD_PATH
	APICAST_PROXY_HTTPS_CERTIFICATE_KEY
	APICAST_PROXY_HTTPS_CERTIFICATE
	APICAST_PROXY_HTTPS_PASSWORD_FILE
	APICAST_PROXY_HTTPS_SESSION_REUSE
	APICAST_HTTPS_VERIFY_DEPTH
	APICAST_REPORTING_THREADS
	APICAST_RESPONSE_CODES
	APICAST_SERVICES_LIST_URL
	APICAST_SERVICES_LIST
	APICAST_UPSTREAM_RETRY_CASES
	APICAST_SERVICE_${ID}_CONFIGURATION_VERSION
	APICAST_WORKERS
	BACKEND_ENDPOINT_OVERRIDE
	OPENSSL_VERIFY
	RESOLVER
	THREESCALE_CONFIG_FILE
	THREESCALE_DEPLOYMENT_ENV
	THREESCALE_PORTAL_ENDPOINT
	OPENTRACING_TRACER
	OPENTRACING_CONFIG
	OPENTRACING_HEADER_FORWARD
	APICAST_HTTPS_PORT
	APICAST_HTTPS_CERTIFICATE
	APICAST_HTTPS_CERTIFICATE_KEY
	all_proxy, ALL_PROXY
	http_proxy, HTTP_PROXY
	https_proxy, HTTPS_PROXY
	no_proxy, NO_PROXY

	CHAPTER 7. CONFIGURING APICAST FOR BETTER PERFORMANCE
	7.1. GENERAL GUIDELINES
	7.2. DEFAULT CACHING
	7.3. ASYNCHRONOUS REPORTING THREADS
	7.4. 3SCALE BATCHER POLICY

