

Selections from
Effective Business Process Management with JBoss BPM

Selected by Eric D. Schabell

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

 Copyright 2017 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617295393
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

http://www.manning.com

brief contents

1 WHAT’S IN A PROCESS ...1
1.1 Introducing BPM 2
1.2 An introduction to rules, events and processes 7
1.3 Understanding the role of community projects 10
1.4 Meet the JBoss BPM Suite 11
1.5 Summary 17

2 PROCESSING FIRST STEPS ..19
2.1 Installing JBoss BPM 20
2.2 Start a first project 22
2.3 Touring JBoss BPM in the Cloud 34
2.4 Summary 36

3 MODELING PROCESS DATA...37
3.1 Data modeling tooling overview 38
3.2 Complete your data model 50
3.3 Summary 58

4 STARTING WITH BUSINESS RULES ...59
4.1 Business logic central to your process 60
4.2 Considering technical and guided rules 64
4.3 Summary 85
iii

iv brief contents
5 CREATING COMPLEX BUSINESS RULES.................................... 86
5.1 Complex domains as natural language rules 87
5.2 Complex rules made easy with decision tables 96
5.3 Summary 104

index 105

Chapter 1
What’s in a process
This chapter introduces you to Business Process Management (BPM) and the
important terminology used as you embark on the path to learn this technology. I
begin with a process and what’s within the context of BPM. As you explore JBoss
BPM there are three important aspects that support integrating business activities
into the processes you’re developing. These aspects are business rules, business
events and business processes. I discuss each and provide an overview showing how
each can be used to support your process development projects.

 Next is a tour of the community of Open Source projects that make up the
JBoss BPM product eco-system. Projects are highlighted, specifically outlining how
project code’s integrated into a supported JBoss BPM Suite product. These com-
munities allow you to keep an eye on the research and development being done in
the area of rules, events and processes. You can influence the direction of this tech-
nology by providing feedback or code contributions.

 Finally, you’re taken on a tour of the JBoss BPM Suite architecture to explore
the components that help you develop process projects. This is an introduction to
how JBoss BPM Suite supports development, testing and runtime execution of pro-
cesses. Testing’s integrated into the chapters where you create artifacts and these
tests demonstrate that your artifacts are working correctly. For more in-depth looks

This chapter covers
 Introducing basic BPM concepts

 Introducing rules, events and processes

 Discovering the community origins of JBoss BPM

 Walking through JBoss BPM Suite
1

2 CHAPTER 1 What’s in a process
at how a specific component works, refer to the chapter devoted to it. The path you’re
taking in this chapter’s highlighted in figure 1.1.

Figure 1.1 The path you take through this chapter, which introduces you to BPM concepts, the path
from community project to products, and getting started with JBoss BPM.

1.1 Introducing BPM
Organizations are constantly being tested in the markets they operate in by shifting
expectations of customers and by competitors looking to provide better value at a
lower cost. This tension’s the catalyst that continually pushes organizations to search
for ways to improve their services, improve the speed which they deliver value to their
customers, enable employees to get more done with less administrative overhead, and,
most importantly, to constantly grow by generating more revenue. This is the basis of
BPM, to be able to identify and capture processes in an organization to create repeat-
able, measurable and consistent execution of their goals to drive business forward.

 When an organization studies its operations, it discovers how many processes are
used in their daily business. These processes are often poorly thought out or were cre-
ated to complete some aspect of the daily business in an ad-hoc fashion. Little thought
was given to improving efficiency within the organization. At this point the organiza-
tion’s interested in finding ways to improve their processes through automation and
provide a return which is represented in business value.

3Introducing BPM
 Business value could be anything that drives organizational goals forward to make
customers happy and thereby generate more revenue. An example of value to your
business could be keeping clear and concise track of interactions with your customers.
If that data can be captured the marketing department could search a customer’s
behavioral patterns to decide what products and services to market directly. It’d take
mass marketing out of the equation and allow for direct and specific marketing target-
ing individual customers’ needs.

 I choose to call this business value, but it’s sometimes referred to in this domain as
knowledge and the people working within a process are then known as knowledge work-
ers. Either one works, but in this book, I’m sticking with business value to capture the
spirit of the organizations we work for.

 It’s possible to identify pieces of business value that aren’t worth automating
because they’re inconsistent or have too many potential paths to justify the effort to
automate. Others require traditional human brain power, which isn’t easy to capture
in automated process form. An example of this is the hiring of employees, a process
that can be largely automated, but the actual decision to hire a specific candidate
remains a factor of human intelligence. You can automate the process of handling
applications, scheduling interviews and the post process of on-boarding a new
employee once hired. Let’s leave the ‘hire or not to hire’ task to humans.

 Another important facet of capturing business value in processes is that you can
monitor processes and tasks as they’re completed to provide business owners with
valuable information. You can provide insights into aspects that interest the business
owner, and make intelligent decisions about when and where to improve a process as
the business evolves.

 Imagine your business is running a retail process to sell products online. This pro-
cess has a user task to approve large orders and is staffed by a set number of people
during certain business hours. Bottlenecks may develop in your process as the busi-
ness grows. What can you do when the Christmas holidays arrive and you expect a
surge in orders? Does the current staffing of the user task allow you to process ten
times the number of orders? What about one hundred times the orders?

 By using historical data captured in previous process instances it’s possible to
determine how many orders are large enough to require human approval, and on
average how long each approval took. If you simulate your process using tooling pro-
vided by JBoss BPM Suite, you can adjust the number of humans working on the
approval task in the process and set how long they take. By simulating hundreds or
even thousands of process instances you can record the results of the orders flowing
through your process and determine whether you need to staff your user task differ-
ently. During the normal months of the year you can process large orders with two
employees assigned for eight-hour days. During the holidays, due to expected
increases, simulation testing reveals a need for twenty-four hour shifts to approve
large orders and you need to increase staffing to four employees. It’s always better to
know this before hiring new employees for the holidays and discovering it didn’t help
process orders fast enough to justify the costs.

4 CHAPTER 1 What’s in a process
 This process looks at a step-by-step plan to accomplish a set of tasks that deliver
business value. The basic series of events that leads to defining a process begins with
identifying the piece of business value to be automated. This process is selected for its
potential to improve the business because:

 the process can be automated
 the process can be consistently executed in the same way
 you can clearly define human involvement in the process
 automation of the process removes current ad-hoc or inconsistent behavior
 measuring the process gains insights into current business behaviors
 insights provide a better means to decide when changes can and should be

made to improve a process
 you can reduce resource waste by efficiently handling wait states

 Once a potential business process is identified, a workshop’s held with the users
from the business unit responsible for executing the process. For example, the human
resource department might be in charge of registering new employees, getting them a
workstation, starting their benefits, and assigning them an e-mail address. This pro-
cess is discussed and dissected to identify the exact steps and order that they’d need to
be accomplished to register a new employee. This results are put in a diagram with
each step, from start to finish, drawn up as tasks to be completed.

 These are the beginnings of a process, known as a process diagram. A process dia-
gram contains all the elements needed to capture the steps in the processes without
any of the execution details. You identify various tasks or activities to be undertaken in
the process and create separate steps for each one, known as task nodes. This process
diagram with all the tasks contains not only task nodes, but also other variations like
start nodes, end nodes, transition arrows, gateways that split paths of the process and
gateways that join paths of the process together again. These are standard elements
that are part of the Business Process Modeling Notation (BPMN) specification1.

 The executions details needed to complete a process could be that a task in the
process needs to send an email. The details missing to send an email from the task are
the sender, receiver, subject line, and body of the email. These need to be defined in
the e-mail task. Another task might be to fetch data from an existing service in the
organization, therefore requiring definitions for the location of the service, the ser-
vice name, any data it might need, and whatever else is needed.

 A process isn’t complete until defining the data needed for the process, which
tasks are to be automated, which tasks humans must complete, what systems are to be
integrated, and the execution details for each task.

 To illustrate this, imagine you’re developing a process definition for a travel
agency booking system. A part of the larger project’s to define a process for register-

1 The BPMN specification’s a standard owned by the Object Management Group (OMG) that was put together
to provide a single specification that tool vendors could then implement against to provide process definition
portability. For more information see http://www.omg.org/spec/BPMN/2.0.

http://www.omg.org/spec/BPMN/2.0

5Introducing BPM
ing a selected flight, hotel, and charge the credit card provided, if not fraudulent, and
notify the customer of their travel details. If the credit card’s fraudulent, you want to
cancel the booked flight and the hotel. Figure 1.2 shows a process diagram of the
travel agency booking section of the project. It’s a fully implemented business process
once the execution details have been added to each task, such as the flight booking
service details, the hotel booking service details, the flight cancellation service details,
the hotel cancellation service details, the credit card payment details, the e-mail
details needed to notify the customer of their travel arrangements, and sorting out the
details for cancellation services before they’re signaled to undo a booking.

Figure 1.2 A process that captures a piece of business value; registering a booking for a hotel and
a flight by taking payment from the provided credit card before notifying the buyer or determining that
the payment was fraudulent and triggering a roll back of the bookings.

 The ideal process is a fully-automated one that removes human involvement. This
is a process without any user tasks and it’s referred to as Straight Through Processing
(STP).

 By capturing a process in a static diagram and removing all human interaction you
ensure that each instance completes in a consistent manner. Any ad-hoc activities that
are part of human nature, like taking a coffee break or visiting with a colleague, are
no longer occurring when it’s captured as an STP process.

 Figure 1.3 is an example of an STP process, where the tasks and decisions are made
without human involvement from start to finish. This process always reaches one of the
end nodes in the process diagram for each and every instance of the process.

 Sometimes a piece of business value which needs to be captured as a process can’t
be fully automated. There remains human involvement to complete these types of
processes, yet automating tasks improves the business enough to justify turning it into

6 CHAPTER 1 What’s in a process
Figure 1.3 An example of a Straight Through Process (STP), this Customer Evaluation
process has only tasks and decisions from start to finish.

a process. By capturing a process that contains user tasks, you’ve stumbled upon an
important feature of BPM which allows you to manage wait states. A wait state’s any
task that requires that you pause processing and wait for some external event to notify
the process to move onwards.

 In classical application delivery, it’s hard to keep track of state. Waiting means put-
ting information into storage to allow the application to be put to sleep until it’s ready
to continue. With BPM technology, you’re provided with a state engine that manages
wait states by keeping track of where you are in the process. It optimizes resource
usage by releasing resources that other process instances can use until they’re put to
sleep. It also manages the rehydration of the process instance when it’s ready to wake
and continue from the current wait state. When a process instance reaches the wait
state, it saves all state information needed to run the process instance and persist, or
go to sleep and wait for something to trigger a restart. When a trigger arrives to restart
a process instance, it rehydrates by gathering the necessary state data, and populates
the process instance exactly as it was before the wait. It then uses the trigger provided
information, such as a user task form with input data, to continue moving the process
instance forward from where it stopped previously.

 Figure 1.4 shows a process that uses Approve Reward. When a process instance starts,
the first task is the user task Approve Reward, at which time the task’s assigned to a man-
ager and waits until a manager has time to work on the task. When this user task’s
reached, the process engine sets up the task, and then puts it to sleep, releasing
resources for other process instances to use. This is how a single BPM process engine

7An introduction to rules, events and processes
can execute many, many process instances at one time; there’s a small set of active pro-
cess instances. Most are either in a completed state or in a wait state and not utilizing
any computing resources.

Figure 1.4 The Rewards process has a wait state in the form of a user task which is used by a
manager to approve or deny a submitted employee reward. The managers decision determines the
completion path to be taken, approved or rejected.

 Once the task’s claimed, worked on and completed, the process instance signals
that it’s ready to move onwards. The process engine rehydrates the process instance,
putting it back into a state to move onwards with the data provided by the user task
and evaluate if it should take the reject path or accept path for this particular
employee reward.

 Now that you’ve a feel for the basics of what BPM is, let’s take a look at the three
main elements that make up a BPM solution and need to be supported by any BPM
product you might use.

1.2 An introduction to rules, events and processes1

The basic building blocks for any BPM project requires a product to have the ability to
integrate business rules, business events and business processes. This section intro-
duces the concept of business rules, discuss what they are, looks at how events differ
from rules, and examines business processes. This approach starts with foundational
building blocks that lead to the high-level business process used to tie it together.

1.2.1 What are business rules?

In traditional application development, you see business logic’s often put into the
application itself. This logic’s implemented in static application code, becoming part
of the artifacts that are compiled, tested and delivered into production. Each change
to the logic within such an application requires a complete release cycle. Code’s
changed, code’s compiled, it’s tested, and finally delivered to production. This costs
time and is susceptible to errors. Changes to any logic’s passed from the business own-
ers during requirement discovery phases, to a project team and developers, whose
interpretation might differ from what was intended.

1 This section comes from an introductory presentation found online.

https://bpmworkshop.github.io/introduction.html

8 CHAPTER 1 What’s in a process
 The next time you’re looking at applications in your organization, look for con-
structs like if-then-statements and case-statements, which are basic indicators of logic that
can be extracted as business rules. These constructs are indicators of business rules
that should be externalized from applications. Once such business rules are external-
ized you can deliver applications, and later modify the externalized business rules
without needing new application code. It’s now possible to put the business rules into
the hands of the business owners, who understand how to maintain the life-cycle of
the applications using the business rules.

 Business rule management systems are designed to provide exactly this kind of
support and tooling to business rules owners and application developers. Business
rule management systems provide tooling to express rules in terms that the business
owners understand, and allows the developer to focus on application delivery as the
business owner retains visibility of the business rules serving customers. Finally, with
business rules centralized in an external location, it becomes easier to maintain con-
sistency across applications using the business rules. If business rules are spread out
across multiple applications, there’s a risk of duplication, and rule maintenance
becomes difficult as the application landscape expands.

1.2.2 What are business events?

Business rules are applied based on a condition that has to be met, and when that condi-
tion’s met the rule triggers an action. Rules are evaluated one-by-one, and they’re either
triggered or not. Rules can be grouped together, but they’re still evaluated one-by-one
to determine if a rule has a condition that, if met, causes its action to be executed.

 Business rules are also part of a concept called business events. Events can be trig-
gered when a rule, or set of rules, match their conditions over a defined time period.
Events that take place within the context of a business rule management system are
still business rules, but now you add a temporal element.

 For example, traditionally there are rules that can be applied to credit card trans-
actions. Imagine a rule that requires a purchase must have a total value that fits the
credit limit for that card. Should the purchase being attempted exceed that credit
limit, the action taken rejects the purchase. This rule can be applied time and again,
without regard for any sort of time sensitive information. It’s only when you add a
time element that it becomes a business event, such as looking at a period of transac-
tions to determine if any took place in locations that aren’t physically possible. Such a
series of purchases, say in Tokyo, San Francisco and Amsterdam in a span of 24-hours,
results in a business event triggering the blockage of the credit card, and a notifica-
tion process to alert the card holder of fraudulent usage of the credit card.

 A more modern example’s how enterprises use business events to monitor their
corporate image across all manner of social media channels. In the travel industry, for
example, you see event monitoring coupled with large customer contact centers,
which are manned by hundreds of employees who receive notifications whenever
online comments reference their company. If they can use event monitoring to detect

9An introduction to rules, events and processes
and respond to messages, negative or positive, directly with the customer who wrote
them, they can have a positive effect on their image in the market. This is a powerful
use of business events and is only possible with a business rule management system
that has event processing.

1.2.3 What are business processes?

I’ve discussed how business processes can be discovered in an organization to reduce
inefficient manual processes by automating as much as possible. What are business
processes used for besides automation? They can be used to improve consistency in
completing a series of tasks, increases visibility, and reduces errors.

 Before an organization starts using processes to streamline their business activities,
they’re a large pool of employees trying to bring value to their customers. This can be
done by filling orders or providing services. These employees are assigned tasks that
might require interaction with back-office systems like shipping, financial, or inven-
tory, or it might require they contact a transport company to handle order delivery.

 A modern organization evolves over time, automating some interactions with back-
office systems, and adding technology to provide a service layer that communicates
with various applications. The problem’s that these services are used by applications
for specific tasks, and not linked together to handle a complete series of tasks that
makes up a business process.

 Once the back-office and external organizations have been put behind an auto-
mated layer of services, business process discovery can identify the processes to be
automated. Business processes become the layer of organization or integration that
brings a series of identified tasks to complete a part of the business. This can some-
times involve human interaction which are referred to as user tasks. By managing user
tasks in your business processes, they’re repeatable, can be measured for efficiency,
and reduce human errors. Finally, an overview of business activities can be monitored
and reports generated to keep track of how various parts of the organization function.
This can lead to quicker decisions around adapting existing processes, or implement-
ing new ones, to further accelerate the earning potential of the organization.

 To review, it starts with experts from the business helping to identify needed tasks
and the sequence in which they’re to be completed. A small group of human resource
employees could be used to discuss the hiring process. They’d tell their stories about
how they put together a job description, place advertisements for the job opening,
handle incoming reactions from applicants, schedule interviews using existing calen-
daring systems for employees selected to interview candidates, gather interview
impressions, obtain a decision from the hiring owner of the job, inform rejected can-
didates, notify the hired candidate, begin the onboarding, etc. Portions of this process
are worth automating, like the onboarding process that uses manual tasks, when auto-
mation saves valuable time and resources.

 A BPM suite’s used to automate the process by integrating services in the organiza-
tion, directly with systems, or managing human interaction with tasks users need to

10 CHAPTER 1 What’s in a process
complete. The BPM suite captures the process instance data and generates reports to
provide business owners up to date information and visibility into every aspect of busi-
ness operations.

 An often-asked question’s when not to use a BPM suite. Although there are many
cases that can be made to fit into a BPM type of solution, sometimes the complexity of
a process lies in the judgements of human interactions. For example, a process to
onboard new hires is a good candidate, but the decision process of who to hire after
interviewing candidates requires a human decision process that you don’t want to
automate. This is a process which isn’t a good candidate nor should it be.

 When looking at BRMS products, note that they support rules and events. A BPM
suite product needs to be a super-set by encompassing BRMS functionality and adding
in support for process development and execution. Therefore, when talking about a
BPM suite, you’re referring to rules, events, and processes in a single suite.

1.3 Understanding the role of community projects
When looking at Open Source software solutions it’s important to understand how
the products in that market are created, maintained, and from where they originate.
This is no different when looking at JBoss BPM solutions, as the entire portfolio of
Red Hat JBoss products is based on Open Source software.

 Before a product can be created, there are community projects that are upstream.
Upstream’s where research and development takes place, where new features are
tested in an open community of coders. These coders can be employed by companies,
work on projects that use community code and want to contribute back fixes and find-
ings they encounter in daily use. Some members of these community projects are only
interested in rules, events and processes, and they use these projects to explore ideas
that interest them.

 Whatever their reasons are, there’s an ever-shifting group of developers working
on projects that make up the community known as Drools (http://www.drools.org/)
and jBPM (http://www.jbpm.org). The Drools and jBPM projects are the foundations
for rules, events, planning, processes, and tooling that can be found co-hosted on
GitHub (https://github.com/kiegroup) for anyone to use and explore. Where the
Drools project‘s focused on business rules and events technology, jBPM is focused on
business process management technology. Both are released under the Apache
License 2.0, a common Open Source license offered by the Apache Software Founda-
tion that gives users freedom to use the software for any purpose, to distribute it, to
modify it, and to distribute modified versions of the software, under the terms of the
license, without concern for royalties (http://www.apache.org/licenses/LICENSE-
2.0). The user’s only required to preserve the copyright, notice and disclaimer.

 Let’s take a look at a few of the projects which are found in the Drools and jBPM
communities to get an idea of some of the work available. Projects are listed for main-
taining websites, specific tools to support users in their tasks, core functionality or
engines, that provide developers with application programming interfaces (API’s),
and special projects that provide functionality for users.

http://www.drools.org/
http://www.jbpm.org/
https://github.com/kiegroup
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

11Meet the JBoss BPM Suite
 Here are a few selected projects that give you an idea of what’s available:

 drools-website (https://github.com/kiegroup/drools-website) – project used to
generate the Drools project website.

 jbpm-designer (https://github.com/kiegroup/jbpm-designer) – project for the
web-based process designer found in jBPM web console.

 jbpm (https://github.com/kiegroup/jbpm) – main project for core jBPM
engine.

 droolsjbpm-knowledge (https://github.com/kiegroup/droolsjbpm-knowledge) –
project for the common API for Drools and jBPM.

 jbpmmigration (https://github.com/kiegroup/jbpmmigration) – small side
project for migration from jBPM 3.x jPDL process format to standard BPMN.

 The community has many more projects, andyou’re encouraged to explore and
keep an eye on the work done there to see what the future might hold for the JBoss
BPM Suite.

 A final question often posed is why not use the jBPM community projects instead
of a product like JBoss BPM Suite. Although it’s easy to obtain community versions of
these projects, it’s not easy to integrate and maintain them in your organization’s
architecture. I mentioned that there are many individual projects taken from the com-
munity by Red Hat and then tested, integrated, quality assured and more before they
present it with a new release of JBoss BPM Suite. This has the extra advantage of JBoss
BPM Suite being able to work seamlessly with other products in the JBoss portfolio.

 Again, community projects seem readily usable, but they’re often not easy to inte-
grate, maintain, keep updated and secured over time. Many organizations choose to
have a supported version of a product where they can rely on the stability offered and
service level agreements to ensure their projects run well in production. Remember,
community’s about innovation and fast moving changes to the projects found there as
new features, engines and theories are tested on the fly. In a product, you’re less inter-
ested in the risks involved in running community versions and more interested in a
solid platform for developing and running your applications.

1.4 Meet the JBoss BPM Suite
In this book, the focus is on the JBoss BPM Suite product. JBoss BPM Suite provides
you with all the engines, tools, testing and execution environments needed to develop
and deploy projects containing rules, events and processes. It brings together, in one
easy to use web console, the designers, modelers, reports and other information that
reduces the complexity of having to install each one individually. It covers the needs
of process project teams, and allows for good visibility into the activities of team mem-
bers as they work on project artifacts. It attempts to make common rules, events and
process tasks easier to accomplish, and with less code development than if done with-
out using JBoss BPM Suite.

https://github.com/kiegroup/drools-website
https://github.com/kiegroup/jbpm-designer
https://github.com/kiegroup/jbpm
https://github.com/kiegroup/droolsjbpm-knowledge
https://github.com/kiegroup/jbpmmigration

12 CHAPTER 1 What’s in a process
 JBoss BPM Suite’s a collection of components made up of projects found in the
Drools and jBPM communities. Specific projects are hard to list as certain features are
sometimes deemed not ready for inclusion in a supported product. These almost-
ready features are sometimes released as technical previews and in later releases become
fully-supported features.

 The components that are found in JBoss BPM Suite are shown in figure 1.5, an
architectural overview of the suite layers. Starting at the bottom, I describe the compo-
nents shown in each architectural layer.

Figure 1.5 JBoss BPM Suite component architecture shows the layers that make up a BPM suite. From
engines, modeling tools, execution monitoring, analysis tools and reporting, the JBoss BPM Suite has
everything you need to design, develop, run and manage your business processes.

In the first layer, this architecture shows JBoss BPM Suite running on the JBoss Enter-
prise Application Platform (EAP). This is a certified configuration, meaning a config-
uration the Red Hat supports and recommends you use with JBoss BPM Suite. A true
spirit of Open Source and interoperability can be found with JBoss BPM Suite, and
support outside of the certified JBoss EAP platform’s based on the use of certain Java
Virtual Machine (JVM) configurations. For more on certified and supported configu-
rations see the product documentation (https://access.redhat.com/articles/704703).

1.4.1 Introducing the core runtime engines

The next layer’s called the Intelligent Integrated Business Runtime and contains the
engines that support the core aspects of the suite:

https://access.redhat.com/articles/704703

13Meet the JBoss BPM Suite
 Business rules engine
 Business events engine
 Process engine
 User task engine
 Business Resource Planner engine

The business rules engine in this layer’s responsible for rule parsing, evaluation, and
execution. It’s called by the application code and it’s supplied with the gathered data,
and the rule set used to test the data. If data matches a rule it triggers predefined
actions. For example, a persons’ age’s passed to a validation rule set that determines if
the person’s a minor or an adult. If the data puts the age under eighteen years old, the
person’s labeled a minor, otherwise they’re labeled an adult. A second way to use a
rule engine’s through a business process. A business process can have a rule task,
which is supplied with details for calling a rule set with data from the process. Often
the outcome of the rule’s used in a decision later in the process to take a specific path
over another.

 A business events engine’s used to keep track of business events, the temporal
aspects, as they occur and trigger rule executions as needed. It’s used by the same
applications when they’re setup to monitor events. It must watch a flow of events for
any matches with a set of rules within a given time period as defined. When an event’s
triggered, the event engine uses the rules engine to execute the defined actions.

 The process engine in this layer manages the state of a process, keeping track of
which task a process instance’s in, and the data involved in that process instance, man-
aging resources by releasing on wait states and rehydration of a process instance when
needed. It also manages interactions with core rule engines, task servers, services and
more. The process engine’s the runtime integration component at the heart of a BPM
suite.

 A separate engine’s used to manage tasks. These are the user tasks that require
forms to display data, and to provide fields for input by users in order to complete the
defined task. This engine’s used to parse the form templates generated from user
tasks defined in processes. These form templates can be embedded into other applica-
tions and be tied to the task engine for processing.

 The final engine’s the Business Resource Planner, an engine used to determine
the best way to allocate resources, to plan a roster, to determine the most effective
route to travel, to optimize bin packing, and much more. It works with a limited set of
constrained resources, such as employees, assets, time and money, to do more busi-
ness with less resources.

1.4.2 Modeling tools for all your BPM needs

To facilitate business users and developers with their rule, event, and process designing,
there are several business modeling tools that allow guided help in the creation of arti-
facts the above runtime engines use for process execution. These modeling tools are
integrated into a central web interface known as Business Central. They’re available in

14 CHAPTER 1 What’s in a process
the developer tooling that Red Hat offers as an integrated solution called JBoss Develo-
per Studio (https://www.redhat.com/en/technologies/jboss-middleware/developer-
studio). It’s based on the popular Open Source Integrated Development Environment
(IDE) called Eclipse (https://eclipse.org).

 Various types of rules exist such as:

 guided rules
 technical rules
 decision tables
 score cards
 guided decision tables
 guided score cards

 Each of these has a modeling tool provided in the web interface to make the devel-
opment of specific rule artifacts easier than coding them by hand. Most of the model-
ers guide the rule developer through the steps needed to design and implement
specific rule types. For example, the guided rule modeler, as shown in figure 1.6, has
an interface to guide the developer from data imports, to the layout of required con-
ditions that trigger actions. The modeler also has views that allows you to inspect the
source code generated by the rule being designed and allows the rules to be stored in
the development repository as it displays change history. It gives the developer a
chance to select a past version and rewind to that point in time of developing the rule.
Various rule modelers are discussed in more detail in later chapters.

Figure 1.6 An example of the Guided Rule Modeler where a developer’s guided
through designing a rule to apply free shipping (shipping value set to zero dollars)
if the total value of the customer purchases exceeds seventy-five dollars.

 The process modeler’s a rich web-based modeler that provides the process devel-
oper with basic and advanced elements for process design. It uses drag and drop from
a list of tasks, including property editors for each task type. This provides further
detail for integration with back-end systems, and provides features covered in later
chapters.

https://www.redhat.com/en/technologies/jboss-middleware/developer-studio
https://eclipse.org/

15Meet the JBoss BPM Suite
 A data modeler provides developers the ability to define data objects that are part
of the process. It provides a simple to use front-end, and allows the user to view the
generated Java source code. This modeler’s covered in later chapters.

 The user form modeler gives the developer a drag-and-drop based tool where task
forms are created or generated task forms are modified. It manages data imports to
bring in models that tie fields in a form to data passed between user tasks and the
form. It has lists of HTML based elements to enhance forms being designed, and
includes specific property editors to allow for customization of elements. Form
design’s covered in a later chapter.

 An asset manager provides help with importing external data models, and manag-
ing assets that make up a process project. This also includes deployment management
at runtime as well as development assets.

1.4.3 Looking at the BPM analysis tooling

Imagine a retail process for selling products online and a few user tasks that require
manager approval on larger orders. Normally two employees are tasked eight hours per
day to process these approvals, and this works. During the Christmas holidays the retail
process is expecting a surge of product orders, and by doubling the number of employ-
ees working on the user tasks they can manage the expected increase of orders.

 This is an example of how, during development, you can examine or test how a
process reacts to severe loads or special situations before being put into production. It
might also be desirable to examine the effects of a process change before they’re put
into production. The tooling provided here’s found in the process designer. It allows
you to set properties for each task to denote simulated costs and time aspects through-
out the process. For example, the user task above takes, at most, fifteen minutes to
complete, and at least five minutes. Furthermore, the task costs, on average, twenty
dollars to complete based on the employee salary and task completion times. The user
tasks can be adjusted to set the simulated number of work hours spent, and how many
users are assigned to completing incoming tasks during the defined work hours.
These properties are then used for input to calculate the time spent on each task, the
cost of the tasks in the path taken through the process, to count the user tasks com-
pleted, and provide an overview of the totals in each category. The results can also be
displayed in a variety of output styles, such as shown in figure 1.7.

 After defining simulation details, you can set the number of process instances you
want to run. Each simulation load you run gives you a chance to watch the server log
output and upon completion, produces a simulation report.

 Back to the retail process and hiring decisions that management think might help
with the Christmas rush. The process developers and testers were able to simulate the
process with two extra employees on the user task and determined three more
employees were required on the user task. They were also able to determine the user
tasks need to be worked on for sixteen hours a day, double the norm, for the expected
work load to be processed in time for the holiday. They were able to make the right

16 CHAPTER 1 What’s in a process
Figure 1.7 The simulation output report can be a bar chart, like shown here, or
changed into one of several other types to give a visual representation of the
simulation data.

hiring decisions and adjust the process workflow by extending the user task working
hours based on valid test data provided by the process simulation tools.

1.4.4 Execution management made easy

After completing process development and deploying the process project, there are a
few tools integrated into JBoss BPM Suite that help start and run through a process
instance. A process manager provides a list of available process deployments from
which you can select one to start. To start a process, process data must be submitted,
and the task manager component provides a user form for entering data. The task
manager keeps track of any user tasks that might be in the process, providing tasks
lists and their status for users to claim, work on, and complete during the process
instance lifecycle.

1.4.5 Providing the necessary reporting and monitoring tools

A key element of any BPM suite's the ability to monitor and generate reports based on
what’s happened during process execution. JBoss BPM Suite has an extensive set of
tooling to provide Business Activity Monitoring (BAM). Out of the box there are
reports designed to show historical data on process and task execution. Along with
these reports there’s a dashboard that allow reports to be designed based on any data
source, both internal and external to the BPM suite. The dashboard modeler allows
drag-and-drop creation of web based reports, allows for business owners to measure
based on their own Key Performance Indicators (KPI) and ensure their process audit
trails are shown according to their own business defined needs. More on this compo-
nent’s available in chapter 9.

17Summary
1.4.6 The supporting components

Several components shown in figure 1.5 support the development, deployment, and
execution of BPM projects. These are repositories, developer IDE tooling and system
administration components that round out the suite and are based on industry wide
standard components. The system administration tooling’s used to configure various
aspects behind the scenes when using the suite, such as:

 Users
 Roles
 repository locations
 and more

 The development repository’s where the BPM project artifacts reside and is Git
(https://git-scm.com) based. The business central web console integrates the various
modelers with the developer repository to preserve versions and history, as does the
developer tooling. The deployment repository’s a Maven (https://maven.apache.org)
repository where the project build’s deployed and can be tied into standard enterprise
continuous build systems. Several programmable interfaces (APIs) are available, but
these aren’t covered here, instead see the product documentation.

1.5 Summary
 Business process management (BPM) orchestrates all manner of systems, peo-

ple and services, while allowing you to structure the timeline of their execution.
 BPM starts with a process, where a piece of business value’s automated either

fully or partially to improve the business.
 A fully automated business process is referred to as Straight Through Process-

ing (STP).
 When unable to fully automate a business process, there’s a need to deal with

wait states, such as human interaction through user tasks.
 Capturing and maintaining state in a process is a main characteristic of BPM

that ensures efficient use of resources.
 Some processes aren’t possible to automate, identified by the need for pure

human intelligence for completion.
 Reporting and monitoring provides insights into the current and past condi-

tions of processes, giving business owners insights into process improvements
that might help their business.

 Rules, events and processes are the key building blocks for BPM projects.
 Rules are often found embedded in applications, making it difficult and costly

to update. This is alleviated by using a business rules engine to capture and
externalize business logic for application to call when needed.

 Business events are rules with a temporal element.

https://git-scm.com/
https://maven.apache.org/

18 CHAPTER 1 What’s in a process
 Open Source products like JBoss BPM Suite use upstream community projects
like Drools and jBPM.

 These community projects are created and worked on by a vast array of coders
to deliver functionality that can be used together. It’s often difficult to tie
together all the components in the community to achieve a BPM suite.

 JBoss BPM Suite’s a product from Red Hat that brings together a set of the com-
munity projects that are supported with official service level agreements.

 Various components make up the suite, such as runtimes, modeling tools, simu-
lation tools, process and task execution tooling, business activity monitoring
tooling and the background repositories.

Chapter 3Chapter 2
Processing first steps
As with any new technology, you can’t wait to get your hands on your first installa-
tion of JBoss BPM Suite and start your first process project. You might have dug
into the product documentation online and seen that the installation process
requires a few steps to be done manually. Care needs to be taken on the order that
these steps are done in and you must make sure the default settings are what you
need for your project. If the default settings aren’t what you need, then you can dig
deeper to see what you need to do to change these default settings.

 In this chapter, you’re provided with an easy-to-use installation project that
allows starting a project with JBoss BPM in minutes. This setup has been used in the
workshops I provide online1 and is an effective tool for many new users of JBoss
BPM. You’re installing a new and ready to use JBoss BPM Suite server in minutes.

 As soon as you’ve an installation setup, the next thing’s to start your first project.
You walk through the steps needed to embark on any new JBoss BPM Suite process
project. By the end of this chapter you’re ready to start designing your project’s
artifacts, such as rules, events and processes.

This chapter covers
 Installing JBoss BPM

 Starting a first project

 Touring JBoss BPM in the Cloud

1 If you’re interested in this online workshop, it’s freely available for you to play with online at https://bpm-
workshop.github.io/ and you can install the entire workshop locally through this repository; follow the
instructions included in the project at https://github.com/eschabell/presentation-bpmworkshop.
19

https://bpmworkshop.github.io/
https://bpmworkshop.github.io/
https://github.com/eschabell/presentation-bpmworkshop

20 CHAPTER 2 Processing first steps
 To wrap up this chapter, you’re taken on a tour of the possibilities of using JBoss
BPM in the Cloud. It includes both a look at the OpenShift Online cloud offering and
the possibility for you to experiment with containerized JBoss BPM in a local private
Cloud setup that uses the Red Hat OpenShift Container Platform. I provide links to
more resources to help you explore further Cloud usage, but I’m not going any
deeper in this book.

2.1 Installing JBoss BPM
The easiest way to get started with a JBoss BPM Suite installation’s to make use of the
easy install project. This project’s a standardized installation of JBoss BPM Suite proj-
ect which is used in all the examples found in this book.

 This section ensures that you’ve a working basic installation of JBoss BPM Suite
and that you’re ready to start your first project. It explains the various configuration
decisions that the project has chosen to use, but doesn’t explain all the available con-
figuration options within the JBoss BPM Suite product. Should you be interested
enough to want to investigate more options available to you, I’d suggest digging into
the available product documentation found at http://developers.redhat.com/prod-
ucts/bpmsuite.

2.1.1 Meet the JBoss BPM Suite Easy Install project

The JBoss BPM Suite Easy Install project’s a self-contained project available to you free
online at https://github.com/effectivebpmwithjbossbpm/chapter-3-easy-install-demo.
This project gets you up and running in minutes without the hassle of reading lots of
product documentation. It also provides you with sane defaults for your initial project
explorations in the world of JBoss BPM. The project supports Java 7 or Java 8 and it
assumes you’ve one of these installed on your machine.

 To get started you need to follow the project’s provided readme document, which
contains all the installation instructions. This chapter is going to teach you how to
generate a containerized installation based on the Docker platform1. It isn’t possible to
provide an example installation project as a completed container because you can’t
distribute the JBoss BPM Suite or JBoss EAP products in containers. Let’s look at what
it takes to generate a containerized installation of JBoss BPM Suite, one which is ready
for you to start fresh with your first project.

 The steps to generate a containerized installation are found in the project’s main
readme file and are slightly different than installing locally:

1 Download and unzip (https://github.com/effectivebpmwithjbossbpm/chap-
ter-3-easy-install-demo/archive/master.zip).

2 Download JBoss EAP & JBoss BPM Suite, add to installs directory (see
installs/README).

1 Docker tooling’s outside the scope of this book, but you can find all you need to get started online at
https://www.docker.com/products/overview#install_the_platform.

http://developers.redhat.com/products/bpmsuite
http://developers.redhat.com/products/bpmsuite
https://github.com/effectivebpmwithjbossbpm/chapter-3-easy-install-demo
https://github.com/effectivebpmwithjbossbpm/chapter-3-easy-install-demo/archive/master.zip
https://github.com/effectivebpmwithjbossbpm/chapter-3-easy-install-demo/archive/master.zip

21Installing JBoss BPM
3 Build the demo image from the root of the project directory:

docker build -t effectivebpmwithjbossbpm/chapter-3-easy-install-demo .

4 Start demo container:

docker run -it -p 8080:8080 -p 9990:9990 effectivebpmwithjbossbpm/chapter-3-
easy-install-demo

5 Login to http://localhost:8080/business-central (u:erics / p:bpmsuite1!)

 Now let’s walk through this together from the start to see what a containerized
installation looks like. It’s always nice to have an example of how to get to the starting
point where you can begin to work with JBoss BPM Suite.

 Starting at the point that you’ve started Docker and can enter the command found
in step number three, which you see running in figure 2.1.

Figure 2.1 Once the example project for this chapter’s unzipped and products added, run the docker
build command from the root of the project directory.

 Once the container has been built, you can start it with the command from step
number four as shown in figure 2.2. You see the container starting which looks exactly
like a local machine starting up the JBoss BPM Suite.

Figure 2.2 After the container has been built, you run the container with the command shown.

 To access the container installation, type it into your browser and you’re given a
login to JBoss BPM Suite. Visually there’s no difference between running JBoss BPM
Suite locally and running it in a container.

 http://localhost:8080/business-central

 Log in with user erics and password bpmsuite1! to see the home screen as shown in
figure 2.3.

http://localhost:8080/business-central

22 CHAPTER 2 Processing first steps
Figure 2.3 After logging in to the Business Central you’ll be at the home screen where you can
browse the documentation. This home screen’s where you start your work on BPM projects.

 This completes the containerized installation of JBoss BPM Suite and you’re now
ready to start creating your first project. You’re now able to install these example proj-
ects using container technologies.

 Although JBoss BPM Suite Business Central’s the collection of tools that enable
you to create, manage, run and monitor everything needed for your BPM project, in
this chapter you’re limited to taking a path through Business Central that sets up your
first project. In later chapters, you dive deeper into other areas of Business Central
and the specific tools that you need to design a complete solution.

2.2 Start a first project
This section guides you through the Administration perspective which is where you
start to get a project off the ground. It doesn’t guide you through, nor explain every
single aspect of the administration perspective. It isn’t intended to be an exhaustive
guide, but to give you a practical guide for getting hands on with a new project’s orga-
nizational structure.

2.2.1 Starting with Administration perspective

The administration perspective’s a view that takes you to the tools that an administra-
tor of the JBoss BPM Suite might need. Tools exist to setup your project structure and
to work with the repositories that holds your projects.

 After logging into Business Central, you select the menu item Administration from
the Authoring menu as shown in figure 2.4.

23Start a first project
Figure 2.4 The Authoring menu
contains the Administration item that
leads to the Administration perspective
where you start your project setup.

 The view you’re presented with contains almost nothing, which might be expected
when there are no projects defined. Let’s take a closer look at how projects are orga-
nized within JBoss BPM Suite. The following structure from the top level to bottom
levels look like this and is shown visually on figure 2.3:

 Organizations – allows you to structure high level workspaces organized by
groups or departments in your enterprise.

 Repositories – the actual project assets are stored in a repository. Each organiza-
tion must have at least one repository.

 Projects – a collection of all the assets and configuration information need to
build a functioning system.

 Packages – business assets are stored in package folders and if they work
together then they should be packaged together.

 Next you’re going to add the structure you need for your project one step at a time
to get ready for a retail group process project.

2.2.2 Adding an organizational unit

Imagine you’re working for a large central retail organization which is setting up pro-
cess projects that eventually span the entire organization, but for now you’re going to
focus on human resources (HR) and the finance department (Finance). Later you’re
tasked with process projects relating to the remote stores, logistics and much more.

 The organization structure you might setup to accommodate these first two tar-
geted departments and projects could look like the following:

 Organizations: Retail Group
 Repositories: Back Office
 Projects: HR, Finance
 Packages

– project HR: Employee Onboarding, Employee Rewards
– project Finance: Credit Approval, Add Suppliers

24 CHAPTER 2 Processing first steps
 Our large retail company would be putting all BPM work under the Retail Group
at the top organizational level. Next you’d define the first repository to be Back
Office as you’re going to tackle the internal human resources and financial pro-
cesses. The projects can align with the naming of the departments, and they’re put
under an HR project and a separate Finance project. Finally, you define the first
packages that focuses on the two project spaces. The first two processes are specific
to human resources, namely Employee Onboarding and Employee Rewards. The other
two belong with the financial processes and are called Customer Credit Approval and
New Suppliers.

Figure 2.5 The initial Administration perspective view’s empty, nothing has been setup yet. You start
by setting up your organization using the menu in the top right labeled Organizational Units.

 The employee onboarding can be for processing all you need to get a new
employee registered and working within the retail company. The employee rewards
process is most likely about processing bonuses or awards given to individual employ-
ees. The credit approval process is used by the finance department for approving
credit card accounts for customers at the stores in the retail group. When a new sup-
plier’s added to the logistics network of the retail group, a process is automated to
setup billing and payment processing within the financial systems.

 Let’s setup the above structure in your new JBoss BPM Suite system. You’re still
logged in and looking at the administration perspective as shown in figure 2.5. First
you need to setup the organization, which can be found in the menu labeled Organi-
zational Units. Click on the drop-down menu item labeled Manage Organizational
Units, which opens the Organizational Unit Manager and your screen should look like
figure 2.6.

25Start a first project
Figure 2.6 In the administration perspective, you start by setting up your organizational structure for
projects. Open the Organizational Unit Manager by accessing it through the menu. To add your retail
group organization, you click on the Add button as shown.

 Click on the Add button at the bottom and a pop-up appears for adding a new orga-
nizational unit. You can fill in the following information to create your new Retail Group:

 Name: Retail Group
 Default Group ID: com.group.retail
 Owner: (optional field to assign owner of the org, leave blank)

 Figure 2.6 shows you what the information fields look like after you’ve completed
the fields. You can click on the +OK button to finalize and add the organization. You
should see Retail Group listed under Organization Units, with the remaining Associated
repositories and Available repositories windows empty as there are no defined repositories
yet. Once repositories are available, you can manage assignments to your organization
here.

Figure 2.7 The organizational unit information pop-up provides you with the fields
to add Retail Group and a default group ID of com.group.retail while leaving the
owner field blank.

26 CHAPTER 2 Processing first steps
 Now that you’re done with adding an organizational unit, close the Organizational
Unit Manager by clicking the X button in the top right of the editor. Next up, you add
a repository for the back-office process projects.

2.2.3 Adding a repository

The focus of this imaginary retail group’s initially on the back-office process projects
centered around human resources and the finance department. Several options are
available to you when you examine the Repositories menu as shown in figure 2.8.

Figure 2.8 Several options are available to you
when looking at the Repositories menu. You’re
creating a brand-new repository.

 If you’ve a system setup with previously defined repositories, the List entry in this
menu would provide an overview of all the repositories available to you. The second
entry, Clone repository, is unfortunately a technical term related to the underlying tech-
nology used to manage a repository. Repositories are implemented in GIT
(https://git-scm.com) and the activity by which you’d import an existing repository
into JBoss BPM Suite, if using GIT commands, is called cloning a repository. If you’d an
existing repository you could import it here with the menu entry Clone repository. The
last entry, New repository, is the one you want as you need to create a brand-new reposi-
tory for the retail group’s back office process projects.

 When you select that menu item you see a pop-up appear that asks you to fill in the
information as shown in figure 2.9, namely the BackOffice repository name and then
selecting the Retail Group organization from the list of organizational units. Ignore the
Managed Repository check-box, this feature won’t be discussed in this chapter. Finally,
complete this action by clicking on the Finish button.

Figure 2.9 When adding a new repository, you’re shown this pop-up in which you
enter a repository name and then select the organizational unit.

https://git-scm.com/

27Start a first project
 You should notice that a new BackOffice repository has appeared in the list on the
left in the File Explorer; if not, then refresh your view. Now as with many things in the
JBoss BPM Suite, there are several ways to view the details of this repository, such as:

 Click on the Repositories folder in the File Explorer
 Select from the Repositories menu the entry List

 Both actions are opened in the right pane, the Repository Editor with your new
empty BackOffice repository as shown in figure 2.10. Well, it isn’t completely empty,
there is a single readme.md file which is nothing but a placeholder. You might also
notice that there’s a single entry shown with the GIT repository address in the form of:

 git://localhost:9418/BackOffice

 This can be used by developers to check out a local copy of this repository1, shown
here only to validate that a read only copy can be obtained of the repository with all
artifacts contained therein. Developers want read-write access; click on the ssh button
to show the ssh URL and clone it with:

$ git clone git://localhost:8001/BackOffice

The authenticity of host '[localhost]:8001 ([::1]:8001)' can't be
established.

DSA key fingerprint is SHA256:ok9ukS2j16tEHxI9y2I13e8QhkXwIulS0MytwfxEOo0.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[localhost]:8001' (DSA) to the list of known
hosts.

1 Here you’re shown how to obtain a read-only version of this project’s repository. For more details on how to
obtain a read-write copy of a project’s repository as a developer might desire to do see http://www.scha-
bell.org/2014/02/redhat-jboss-bpmsuite-access-git-using-ssh.html.

Figure 2.10 Once the BackOffice repository has been created it’s visible in the left File Explorer pane.
You can open it in the Repository Editor by clicking on the folder Repositories or by selecting the
Repositories menu entry List.

http://www.schabell.org/2014/02/redhat-jboss-bpmsuite-access-git-using-ssh.html
http://www.schabell.org/2014/02/redhat-jboss-bpmsuite-access-git-using-ssh.html

28 CHAPTER 2 Processing first steps
Password authentication
Password: bpmsuite1!

Cloning into 'BackOffice'...
remote: Counting objects: 3, done
remote: Finding sources: 100% (3/3)
remote: Getting sizes: 100% (2/2)
remote: Compressing objects: 100% (116/116)
remote: Total 3 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (3/3), done.
Checking connectivity... done.

$ ls -1 BackOffice/

readme.md

 As you can see, the only artifact available’s the readme file. I won’t go into any
more details on how developers can interact with this repository, but the focus
remains how to interact through the Business Central interfaces. Next up, your task’s
adding projects for human resources and the financial department.

2.2.4 Adding new projects

If you remember, you’ve put together the Retail Group organization and Back Office
repository. Now you create two projects for the human resource and financial depart-
ments.

 Let’s switch over to the Project Authoring perspective which you find in the Authoring
menu at the top, remember? Figure 2.11 shows you the Project Explorer, the left panel
on your screen where you see the menu structure in the form of:

ORGANIZATIONS – REPOSITORIES – PROJECTS

 The menu shows one of the available organizations, repositories and projects. In
your case having only create one organization, it’s selected by default. With one repos-
itory, it’s selected too. No projects have been created yet, and it’s empty.

 Should you have more organization, repositories and projects you’d be able to
select your choices in these drop-down menus. At this point it’s time to add your proj-
ects for the human resources and financial departments.

Figure 2.11 After using the Authoring menu
and selecting the Project Authoring
perspective, you’re shown the Project
Explorer with your structure.

29Start a first project
 The New Item menu’s where you can create any type of asset you might want to use
in your project, but first you need a project. Therefore, in figure 2.12, all other avail-
able assets are greyed out and you can’t select them. The only option available’s the
Project item.

Figure 2.12 The New Item menu’s used to
add any of the assets you find listed. As you
currently don’t have a project defined, all the
assets except Project are greyed out and
unavailable. Select the Project to reach a
pop-up labeled Create new Project where you
can enter a project name.

 Click on the Project entry to open a pop-up labeled New Project. Enter a project
name and the rest of the project details as shown in figure 2.13.

Figure 2.13 This is the New Project pop-up where you can fill in all the information and details for
your new project. Some fields are pre-filled based on previously entered information, and others can be
filled or modified as desired. The last three are related to JBoss BPM Suite using Maven as a project
build tool behind the scenes. These three fields are generated based on data previously entered about
the project and you can either accept these defaults or modify any of the fields as you desire.

It contains the project
name, a description and some details which are directly related to the fact that the

30 CHAPTER 2 Processing first steps
build process behind the scenes is based on Maven (https://maven.apache.org). The
only thing you need to know is that projects which use Maven are defined with a
group id, an artifact id and a version number. All three of these are auto-filled for you
based on previously entered data and you can either accept these defaults or adjust as
you desire before continuing by clicking on the Finish button at the bottom right.

 This creates the project and open the Project editor in the right pane on your
screen as shown in figure 2.14.

Figure 2.14 After creating a project, the Project Editor’s displayed with project details.

 Now you’re going to create the three other projects by selecting from the New Item
menu Project and filling in each of the following project names. The details for the Cre-
ate new Project I leave up to you to come up with yourself:

 HR Employee Rewards
 Finance Credit Approval
 Finance Add Suppliers

 Did you notice that after the first project was added that all the new item asset
types that were previously grey colored are now available for creation? This is because
once a project’s defined you can begin creating rules, events, models and processes.

 Your project’s drop-down menu in the Project Explorer should look something like
figure 2.15. All four projects are available for you to choose from and if you select one
it opens that project’s Project editor in the right pane for viewing along with all the
assets, if any, in the left Project Explorer pane.

 Did you notice that within the Project Explorer there are a few more options besides
the organizations, repositories and project’s drop-down menus? A small button’s at
the top in the middle of three with a sort of gear icon.

 Start by putting your mouse pointer on it to expose the pop-up text labeling this
button as Customize view. By clicking on it you expose the menu shown in figure 2.16
where you can determine how you want to view to look in the Project Explorer.

https://maven.apache.org/

31Start a first project
Figure 2.15 From within the Project Explorer you can view all
available projects from the drop-down menu. Here you see all four of
the projects you’ve created. If you select one it opens, showing the
Project editor in the right pane and the project assets listed in the
Project Explorer pane on the left.

Figure 2.16 The Customize View button produces a menu where
you can adjust the view and how a project’s shown. The Project
View’s the default, and the Repository View exposes project files as
if you’re viewing the file system.

 By default, it’s set to Project view, which means you’re shown project assets in the
format of categories with drop down menus. Right now, the only example you have’s
the category of Work Item Definitions, which drops down into a single item. If you select
Repository view, it changes your view to that of all the files in the project as if you’re
looking directly at the file system as shown in figure 2.17.

 The Project view is meant to provide a more focused view of the BPM project assets
that you can manage through the provided Business Central tooling. You can guess
that the developer role in your team might feel better working with the repository
view, and a process analyst and architect are comfortable with an asset focused project
view.

 The next two items in the customize view menu shown in figure 2.16 are Show as
Links (the default) and Show as Folders. Selecting them appears to change nothing, as

32 CHAPTER 2 Processing first steps
Figure 2.17 This view in
the Project Explorer’s called
Repository view and exposes
all files in a project as if
you’re viewing the file
system.

this is related to the view you first need to expand with the small ‘+’ button next to your
projects menu in the Project Explorer. If you click on this plus button it opens the cur-
rently selected project and shows you a linked view of the folder structure. For example,
in figure 2.18 you see that I’ve the project HR Employee Rewards selected and I’ve already
clicked on the plus button to expand the folder view. Clicking on the folders com – group
– retail – hremployeerewards, in that order, exposes a linked view of the project.

Figure 2.18 This is your view of a project in the Project Explorer after
you configure your view to show the HR Employee Rewards project as
links. You can click on the project structure from com – group – retail –
hremployeerewards to expand the linked view down into the project
structure. Any artifacts in a specific folder are displayed in the Project
Explorer when you reach that depth. This image shows the deepest level
of the project have selected.

33Start a first project
 If you click on the gear icon to customize your view, select the Show as Folders. This
alters how folders are shown to better resemble your file system. Now you can click on
each folder down into hremployeerewards until it resembles figure 2.19.

Figure 2.19 This is your view of a project in the Project Explorer after
you configure your view to show the HR Employee Rewards project as
folders. You can click on the project structure from com – group – retail
– hremployeerewards to expand the folder view down into the project
structure. Any artifacts in a specific folder are shown in the Project
Explorer when you reach that depth. This image shows the deepest level
of the project selected.

 In the customize view menu you can also Enable Tag filtering, which should allow
you to filter the views by certain tags you can later assign to project assets. I won’t dem-
onstrate this but you’re welcome to explore this later when you encounter the option
to tag any project asset.

 You can also download your project or repository, the ones selected in the drop-
down menu in your Project Explorer, by selecting the menu items Download Project or
Download Repository respectively. Depending on your browser settings you might asked
where to save the download or it might automatically save the file. These files are Zip
archives of the requested repository or project.

 The left button next to the configuration view gear icon’s the Refresh button, a sort
of circular icon used to refresh the static view of the Project Explorer at any time. This
can be necessary from time to time as you’re using a browser based view which isn’t
always able to detect changes to the view as fast as you’d like; click on the refresh but-
ton to pick up changes.

 A button labeled Open Project Editor opens the project details in the panel on the
right, as you’ve already seen. This completes your setup of the Retail Group’s reposito-
ries and projects, and you’re now ready to start designing the process artifacts that are
part of the project solution.

34 CHAPTER 2 Processing first steps
2.2.5 Where are the packages?

The sharp reader might have noticed that the concept of organizations, repositories,
projects and packages has been covered in the previous sections. You explored in
depth examples of setting up a project that included the organization, the repository
and several projects.

 What happened to the concept of packages and where are you going to learn about
them? This is a concept that you don’t use to define a project from the start, it evolves as
the project assets are designed and created. For example, when designing rule assets, you
can group these rules in packages. The product documentation (https://access.red-
hat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite) talks about this.

A package is a collection of rules and other related constructs, such as imports and
globals. The package members are typically related to each other, such as HR rules. A
package represents a namespace, which ideally’s kept unique for a given grouping of
rules. The package name‘s the namespace, and isn’t related to files or folders in any way.

 You can find references to packages, where artifacts are grouped within projects
into packages. This is visible in the Project Explorer where you encounter the pack-
ages such as Work Item Handlers or Business Processes; menu items where assets that work
together are grouped. This isn’t the same stringent structure as the above package
namespaces are for rules. It can be a confusing concept within JBoss BPM Suite as it
depends on whether you’re looking at packages as a developer or at as a higher-level
business concept like architects or process analysts would.

 Now you’ve covered all the concepts that you need to understand for setting up
your first project, it’s time to take a tour of the options available to you for exploring
JBoss BPM in the Cloud.

2.3 Touring JBoss BPM in the Cloud
This section provides a short tour of JBoss BPM as it can be used in the Cloud. It
points you to materials that you can explore further at your convenience. You’re pro-
vided informational sites and example demo collections, but this topic’s too extensive
to dive into deeply here. You won’t be walking you through any of the example proj-
ects or diving deeply into the technical details of how you can deploy your JBoss BPM
applications into the Cloud. I leave this to you to explore at your leisure.

2.3.1 What exactly is JBoss BPM in the Cloud?

The concept of JBoss BPM in this book has been to focus on local installations and
interaction through Business Central in your browser. An astute reader can easily
imagine that when working in a browser, it doesn’t matter where your JBoss BPM
Suite’s hosted.

 The first experience you can create’s to have JBoss BPM Suite running in the
Cloud and available to you anywhere instead of hosting it locally. Another’s to deploy
your solutions into the Cloud for others to use. At the time of this writing there are a
few solutions which are officially supported with more scheduled to be delivered into

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite

35Touring JBoss BPM in the Cloud
the market soon. You can follow the availability and learn more at the OpenShift
xPaaS topic (https://www.redhat.com/en/about/blog/xpaas).

 Let’s look at getting the same experience in the OpenShift Cloud with JBoss BPM
Suite as you’ve seen in this book.

2.3.2 Getting the Cloud experience

To get a basic OpenShift Cloud setup, you’d normally need to have access to the Red
Hat Customer Portal (https://access.redhat.com) where you could download the
OpenShift components for installation in a data center somewhere. Luckily, there’s also
a way to obtain these components for free at the Red Hat Developers site (http://devel-
opers.redhat.com) and install them locally for the same Cloud experience.

 To make this entire experience easier, I’ve setup an organization called the Red
Hat Demo Central (http://github.com/redhatdemocentral) where you can browse a
collection of easy-to-use JBoss example projects that run on the OpenShift Cloud. The
first one you need to start with is the OpenShift Container Platform (OCP) installa-
tion demo. The OCP is meant to provide you with a ready to use local installation of
OpenShift. Once it’s installed you’re ready to start developing your applications for
deployment into the Cloud.

 After you’ve installed the OCP project, there’s a version of the JBoss BPM easy
installation that can be used to install JBoss BPM Suite into your personal OpenShift
Cloud. This enables you to log in to the Business Central console and start working on
your BPM projects as explained to you in this chapter.

 I want to provide you with a few steps in the format of a plan that you can follow
should you be interested in trying this out. This plan only covers high level steps you
need to take; refer to the individual project readme files for detailed steps.1

1 Install the OpenShift Container Platform Install Demo from project named ocp-
install-demo (https://github.com/redhatdemocentral/ocp-install-demo)

2 Install the App Dev Cloud with JBoss BPM Suite Install Demo from project named
rhcs-bpms-install-demo (https://github.com/redhatdemocentral/rhcs-bpms-ins-
tall-demo) being sure to pay attention to the OCP installation instructions

3 Log in to Business Central as instructed in the installation directions and begin
to develop BPM process projects

 Now that you’ve a basic installation in the OpenShift Cloud I provided, you can
move on to explore more of the example projects hosted at Red Hat Demo Central.
Let’s take a closer look at one of these and provide you with the plan to get it installed.

2.3.3 Installing the JBoss BPM Travel Agency in the Cloud

After installing your Cloud through the CP install demo project, you’ve been given
the plan to install the JBoss BPM Suite to start with your BPM projects.

1 Everything mentioned in the steps listed here can be found in the Red Hat Demo Central at
http://github.com/redhatdemocentral.

https://www.redhat.com/en/about/blog/xpaas
https://access.redhat.com/
http://developers.redhat.com
http://developers.redhat.com
http://github.com/redhatdemocentral
https://github.com/redhatdemocentral/ocp-install-demo
https://github.com/redhatdemocentral/rhcs-bpms-install-demo
https://github.com/redhatdemocentral/rhcs-bpms-install-demo
http://github.com/redhatdemocentral

36 CHAPTER 2 Processing first steps
 The JBoss BPM Travel Agency isn’t only available for local installation, but also for
use on the OpenShift Cloud. The following high-level steps are needed to complete a
full installation in the OpenShift Cloud, see the individual project readme files for
detailed instruction.

1 Install the OCP Install Demo from project named ocp-install-demo
(https://github.com/redhatdemocentral/ocp-install-demo)

2 Install the App Dev Cloud with JBoss Travel Agency Demo from project named
rhcs-travel-agency-demo (https://github.com/redhatdemocentral/rhcs-travel-
agency-demo)

3 Log in to Business Central as instructed in installation directions and you can
explore the JBoss Travel Agency project

 This is but one example project, there are many more you can explore in the Red
Hat Demo Central collection that showcases BPM application development in a Cloud
stack.

2.4 Summary
 Installing JBoss BPM Suite can be done easily on a machine to get started with

BPM process projects.
 Containerized installation of JBoss BPM Suite’s as easy as installing locally and

the container can run on any supporting container engine.
 Before embarking on a first BPM project it’s necessary to define organizations,

repositories, projects and packages.
 Organizations allow you to structure high level workspaces organized by groups

or departments in your enterprise.
 Repositories are the concept of where the project assets are to be stored in an

actual repository.
 Projects are a collection of all the assets and configuration information need to

build a functioning system.
 Packages contain business assets are stored in package folders and if they work

together then they should be packaged together.
 JBoss BPM can be used in the OpenShift Cloud either to develop BPM applica-

tions or for deploying BPM applications.
 Multiple example BPM cloud projects can be found on Red Hat Demo Central.

https://github.com/redhatdemocentral/ocp-install-demo
https://github.com/redhatdemocentral/rhcs-travel-agency-demo
https://github.com/redhatdemocentral/rhcs-travel-agency-demo

Chapter 3
Modeling process data
One of the most important building blocks for a process project’s data. It could be
argued that this is a fact for any application development project. It applies even
more for a process project which, by definition, are receiving, acting on, moving,
manipulating and modifying data constantly during its lifecycle. This data needs to
be in a form that can be easily understood by all involved with designing and build-
ing the process project. The form the data’s put into’s called a Data Model, which is
a part of every computer science student’s education, learning how to formally
model data.

 The discovery of data is part of the process you’re implementing, as well as the
structuring of this into a form that can be considered a data model, is outside the
scope of this book. I start when you’ve completed a data model which has been
delivered to you for implementation, and you need to make this model available to
applications and processes from within the JBoss BPM Suite.

 Let’s imagine you’re part of a project team which is automating a process to
determine if a customer of your financial institution has the right income and age
to be considered for a car loan. There has already been a round of discovery work-
shops to uncover the process steps, which uncovers the data needed to complete
the process. This data’s modeled by someone in the project team and delivered to
you as the project team member responsible for implementing this data model.

This chapter covers
 Implementing a data model in JBoss BPM

 Using JBoss BPM data modeling tool

 Examples of data modeling in JBoss BPM
37

38 CHAPTER 3 Modeling process data
 At this point, with your data model in hand, you’ll start the journey of implement-
ing data objects for your process projects.

3.1 Data modeling tooling overview
Traditionally the art of data modeling referred to how data was structured in an orga-
nization. You can find detailed definitions of data modeling1, but for our purposes I’m
focusing on being able to create a simple set of data objects that represent the data
being manipulated in our process project. I don’t provide details provided on how to
design data models, nor do I discuss the actual code generated behind the data mod-
eler tooling when you create a data object.

 The data objects used here are the following:

 Employee
 Department

 An employee has a name, employee number and a department that she works in.
The department data object has a name, department number, and list of employees
that belong to that department. This is a simple and fictitious data model, shown in
figure 3.1, from the example project described above and I’m going to walk you
through implementing it in JBoss BPM Suite.

Figure 3.1 This example data model has been
given to you for implementation in JBoss BPM
Suite. It consists of two data objects;
Department and Employee.

3.1.1 Getting started with data modeling

The first thing to do with a new design for your projects data model’s to start imple-
menting that model. This can be done by developers in the Java programming lan-
guage using their favorite editors or integrated development environments, and given
to your project, or you can use the data modeler provided by JBoss BPM Suite. I’m
going to show you how to use the data modeler within the JBoss BPM Suite tooling as
shown in figure 3.2.

1 A formal definition can be found at http://www.webopedia.com/TERM/D/data_modeling.html, which states
“Data modeling is often the first step in database design and object-oriented programming as the designers first
create a conceptual model of how data items relate to each other. Data modeling involves a progression from
conceptual model to logical model to physical schema.”

http://www.webopedia.com/TERM/D/data_modeling.html

39Data modeling tooling overview
Figure 3.2 An overview of the path you’ll take in this chapter’s outlined. Inside the box are the steps
to be covered, from the moment you receive a data model design, through implementation in JBoss
BPM Suite, to the final data objects in your project for use by the rest of your team.

 Let’s get started modeling the data model we’ve been given. First, you need to
login to the Business Central console as shown in figure 3.3. If you haven’t previously
done it, browse the documentation found in the tabs indicated by the arrows in the
figure to get a feel for what’s available in JBoss BPM Suite.

 Next, you open the project authoring perspective to begin accessing and creating
your data model. This is found in the Authoring menu as shown in figure 3.4; select
Project Authoring to open the perspective where you see the data modeler.

40 CHAPTER 3 Modeling process data
Figure 3.3 After logging into the Business Central you’ll be at the home screen where you can
browse the documentation. This home screen’s where you start your work on data modeling.

Figure 3.4 The Project Authoring perspective can
be found in the Authoring menu and opened by
clicking on the Project Authoring entry. This’ll get
you to the various authoring tools for any BPM
projects you’re working on.

 Now that your project’s in front of you, open the data modeler by selecting from
the New Item menu a new Data Object. This produces a pop-up, shown in figure 3.5,
where you can get started on your first data object, the Employee. You can provide the
following details to get started with the Employee data object:

 Data Object : Employee
 Package : com.group.retail.hremployeerewards
 Persistable : (leave check box empty)

 The first’s the name of the data object, Employee, as we’re going to create an object
to hold our employees for this project. The package name’s selected from a drop-down
menu and specifies where the data object’s to be stored in your project. The final item,

41Data modeling tooling overview
Persistable, is a check box that allows you to indicate that you want to save this object to a
database table, and provides special configuration details that need to be generated for
you. That sort of mapping of data to a database table’s outside of our scope as we’re
managing our data objects in memory, and you can leave that box empty.

 You finish creating the Employee data object by clicking on the +OK button, which
opens the data modeler with the provided Employee details already inserted in some
of the fields you see.

 Now the Employee object appears in the data modeler within your Business Cen-
tral console and you’re ready to interact with the data modeler to start adding data
fields like name, department and employee number.

 Now you expect to see the newly created Employee data object in your Project Exp-
lorer pane on the left side of your screen, right? The reason that it isn’t there’s because
you’re viewing the default level of your project, which contains all the assets you created,
except for assets given package names that are deeper into the project folder structure.

 If you remember, you created the Employee data object with the package set to
com.group.retail.hremployeerewards which translates to the folder structure of
com/group/retail/hremployerewards/Employee.java in your project. Any time you wish to
browse or select the data modeler for the Employee object, you need to first navigate
down to this folder before it appears in the Project Explorer.

 In figure 3.6, the Project Explorer’s shown with the folder structure expanded.
 If you click on the Employee object, it opens in the data modeler. Any time you’re

looking for the data objects available in a project, you can follow this process within
the Project Explorer to traverse your project and explore data model assets.

Figure 3.5 Use this pop-up to create a new data object.

42 CHAPTER 3 Modeling process data
Figure 3.6 Data objects are put into packages in which they appear hidden
from the main Project Explorer default view. To find them you need to expand
your folder structure.

3.1.2 Taking a close look at the data model editor

After initializing the Employee object, you’re now at the point of adding all the identi-
fied fields like name, employee number and department where the employee’s work-
ing. This section takes you through the data model editor, explaining what’s available
to complete the Employee object.

 In figure 3.7 you see the Employee data object in its initial state after opening it in
the data model editor.

Figure 3.7 The JBoss BPM Suite data model editor where you create, modify and view data objects.

Nothing has yet been created outside of a name and assigning
it to a location in the projects package structure. This is at the starting point for fur-
ther implementing the details of this Employee object. To start working with the data
modeler you need to understand the layout of this editor.

43Data modeling tooling overview
 You’ll use a few menu bar buttons while creating and updating your data objects.
Let’s look at their actions in table 3.1.

 Any time you’re modifying your data objects, be sure to use the Save button and
provide a short message as to what you’ve changed. It’s easy to lose some of your work
by forgetting you’re working in a browser-based editor and pressing the back button
on your browser.

3.1.3 Adding fields to a data object

Now that you’ve an idea of what the data model editor looks like, let’s finish the
Employee object by adding all the fields that were identified earlier. Let’s start with
the field for the employee name by clicking on the +add field button to generate a pop-
up labeled New Field as shown in figure 3.8.

Figure 3.8 The New field form pops-up when you click on the +add field button in the data
model editor.

Table 3.1 An overview of the data modeler buttons as found on the top right of the screen. You can
activate six actions by clicking on one of the buttons shown here.

Button name Button action

Save persists the contents of your data object to the file system

Delete remove this data object from your project

Rename change the name of the file holding this data object

Copy create a copy of this data object, and provides a quick way to setup a new data
object

Validate validates that the data object’s in a good state to be used

Latest Version a menu that lets you select any existing version saved in the past should you want
to go back to a previous version of the data object

44 CHAPTER 3 Modeling process data
This pop-up’s asking for the values that you can enter with the following values shown
in figure 3.9:

 New field

 Id : name
 Label : Name
 Type : String
 List : don’t check this box

Once you’ve completed all the items for your field, you can submit them with the Cre-
ate button or with Create and continue.

 The Create button submits and closes out the New field pop-up form.
 The Create and continue button submits your field and opens an empty New field

form, allowing you to add multiple fields quickly.

 Figure 3.9 also gives a good look at the item Type, which is a menu with many
entries to pick from. Most are from the Java language, as this is the implementation
language used to create JBoss BPM Suite. One interesting entry isn’t a standard Java
type; did you see it? Look closely and notice the entry entitled com.group.retail.hremploy-
eerewards.Employee. If you think back, when we created our initial Employee data
object, it was put into a package with exactly that name. As you can now see, each
object created’s also available for use as a field type, even as a list of types if you should
check the box making a field a list.

Figure 3.9 This is the entry form called New field, used to add relevant
information when adding a field to an existing data object. Here’s a field
with an id, label and type with the values name, Name and String are being
created.

45Data modeling tooling overview
 At this point use the Complete button to submit the field and close the form. This
way you can examine your work as the data object editor now includes the name field
in the list of fields in the left pane as shown in figure 3.10.

Figure 3.10 After adding the first field name, it appears in the data modeler.

 Now you’re a real BPM data model editor expert, having successfully created the
Employee data object and added a name field! It’s time for you to fly solo and create
the two remaining fields for Employee; the employee id and department fields. Create
and verify them against figures 3.11 and 3.12. Otherwise follow along as I help you to
create them.

 Click on the +add field button in the data model editor to create the employee id
field with the data here, it should look like figure 3.10 after you submit with the Create
button:

 Employee id field

 Id : employeeid
 Label : Employee Id
 Type : Integer
 List : don’t check this box

For the last field, you’re adding to the Employee object, click on the +add field button
in the data model editor to create the department field with the data here, submit it
and ensure it looks like figure 3.12:

 Employee id field

 Id : department
 Label : Department
 Type : String (for now, see why in figure 11 description)
 List : don’t check this box

46 CHAPTER 3 Modeling process data
 This completes the Employee data object with the fields name, employee id and
department. You can now use the Save button in the data model editor found in the
top right—it produces a pop-up labeled Save this item, in which you can enter a com-
ment. For example, enter “Created Employee Object” and click on the Save button to save
your data object.

 Before you finish the entire data model by adding the Department object, here are
a few more of the features available to explore and work with your Employee object. If
you’ve been paying close attention to your screen you might notice two more tabs at
the top of the editor, let’s look at them.

3.1.4 More to the data modeler than meets the eye

The data modeler offers a few tabs at the top, the first being the editor you’ve been
using. The second is labeled Overview and it’s the next one that shows what can be
done with the Employee object you created.

Figure 3.11 The Employee object in the data model editor should look
like this when you finish adding in the employee id field.

Figure 3.12 The Employee object in the data model editor should look
like this when you’ve added the last department field.

47Data modeling tooling overview
 You can open the Overview tab by clicking on it, which opens the view shown in fig-
ure 3.13. Note that this view contains the same main header and menu buttons on the
top left or right as was covered in the editor.

Figure 3.13 The data modeler Overview tab provides all the details around the currently selected
object. In our case, it’s the Employee object.

 The section on the top left provides detailed information about the Employee
object, such as its type, a field to add a description for this object, which projects use
this object, the date this object was last modified, and when you created the Employee
object. On the lower left, you see the versions of the Employee object that you’ve
saved in the past. The current version’s listed at the top and it’s the one currently dis-
played in the data modeler. If you go back to a previous versions listed, select an entry
and it’ll replace the current version of the data modeler. On the right, you’ve a com-
ments field where you can leave information for your fellow modelers.

 If you click on the Metadata tab next to the Version history tab, you’ll see something
like that shown in figure 3.14. This shows you an editor to add some extra, or meta,
information about this data object. You can insert a tag name, like employee-docs as
shown here, and click on the Add a new tag button. The Note field shows you the last
save message for this object and the actual path to the object’s file in your project. The
URI field points to the exact file for checking out the current data object from the
GIT repository for this project. The Subject, Type, External link and Source fields are all
free form text fields that let you put any information in them you deem pertinent for
this data object.

 These fields are left to you to determine how you want them to be used. For exam-
ple, here we set the Type to Doc as we’re relating all the information supplied here to
the documentation-related employee-docs tag. All this extra information can be
added to enrich the information supporting your data object, and is often detailed

48 CHAPTER 3 Modeling process data
Figure 3.14 The tab labeled
Metadata provides you with
the chance to add extra
information about the
current data object.

about how an organization works with data. The more details in your artifacts, the less
chance of confusion later for anyone who revisits your data object.

 The last field, labeled Lock status, shows if someone locked this data object by having
it open in the data modeler editor, and provides a button that allows you to unlock it.

 Valid reasons to take away a locked object exist. Imagine your colleague was work-
ing on the Employee object and left it open on his machine when he went away on an
extended vacation. It might be nice to be able to access it after you’ve verified that the
person isn’t going to be working on the Employee object.

 Now that we’ve opened the Employee object, it puts a lock on this behind the
scenes. The next person, working on a different workstation and in a different
browser, who attempts to open this Employee object will find it locked. It opens for
them, but it’s shown with a small lock icon next to the name in the Project Explorer,
and is only readable. They could use the Metadata tab to force an unlocking of the
data object, but be aware that they’re possibly interrupting your work as you’re
unaware that they’ve taken the data object lock away. This is a light form of locking,
which means it doesn’t inform anyone about who forces the unlocking, and everyone
using the system’s responsible for behaving nicely when taking away a locked object
from another user.

49Data modeling tooling overview
 Remember to save any modifications you’ve made in the Overview tab by clicking
on the Save button found in the top right menu bar; it produces a pop-up labeled Save
this item that allows you to enter a comment. For example, enter “Added metadata to
Employee Object” and click on the Save button to save your data object.

3.1.5 Using the data model source

The last tab in the data modeler’s labeled Source, and it provides a learning tool for
those interested in looking inside data models. If you click on this, it shows you the
Java source code generated for the data object you’re working on. In figure 3.15 you
can see an example of a portion of the Employee object source code.

Figure 3.15 The Source editor’s the tab that provides a developer view of the actual Java
source code that makes up your Employee data object.

 This Source editor’s a free text editor without any developer tooling such as code
completion or other help. It’s a view of what a Java developer would code in an inte-
grated development environment (IDE) tooling, and could add to the project. The
only point to note’s that if a developer chooses to code their own data objects and add
them to the project, they must implement the Java class java.io.Serializable to work with
a JBoss BPM project. This is because everything in the project, behind the scenes dur-
ing runtime, is serialized before being stored in the persistence layer (i.e. database)
and unserialized when it’s retrieved from the persistence layer.

 Furthermore, each data object with fields is a Java serializable object with getter and
setter methods. For example, the name field uses a getName method and a setName
method. Be aware that this editor doesn’t support code completion or other fancy
tooling, it’s a free text editor and you can easily break your data object if you aren’t
careful. Use the Validate button before saving to ensure your data object is working.

50 CHAPTER 3 Modeling process data
 Let’s look at what you can do if you decide to edit a data object by hand in the
Source editor, to make sure you aren’t saving a broken data object. If you click on the
source code and remove the last ‘e’ in the word Serializable on line seven from figure
3.15, you can validate the data object before saving by clicking on the Validate button
in the top right menu bar. After removing the ‘e’ a pop-up box with a validation error
should appear, as in figure 3.16.

Figure 3.16 If you’re going to be editing a data object’s Source, you’ll need to use
the Validate button to ensure you haven’t broken your data object. This pop-up shows
that you’ve broken your data object by removing the ‘e’ from line seven in figure 3.15.
The only way to fix this is to click on the +Ok button and go back to the source code.

If you fix that error by putting the ‘e’ back on to the word Serializable, click again on
the Validate button. You should see a green bar pop-up with a message stating that Item
successfully validated. You can now save the data object without fear of breaking your
project.

 As you can see, the Source editor’s a quick way to fix something in your data object,
but requires discipline to constantly validate that your changes haven’t broken any-
thing. If you stick to the provided data modeler Editor, you’ll never worry about these
types of problems.

 Let’s move on and finish your data modeling task by adding the Department
object, its various fields, and using the Employee object to create a field which is a list
of employees within the Department object.

3.2 Complete your data model
In this section, you finish up the data model used as an example in the previous sec-
tion to tour the tooling at your disposal in JBoss BPM Suite. The initial object was a
simple Employee designed with three straightforward fields.

 For the final object in your example model, you design a Department with two
straightforward fields and an advanced field that consists of a list of employee objects.
Instead of walking you through each field creation, I leave the first two for you to com-
plete after you create the Department data object as follows:

 Data Object : Department
 Package : com.group.retail.hremployeerewards
 Persistable : (leave check box empty)

51Complete your data model
The new Department object should look like figure 3.17.

Figure 3.17 The Department data object as shown in the right pane
properties view.

Next you can create the Name and Department Id fields as follows:
 Department name field

 Id : name
 Label : Name
 Type : String
 List : don’t check box

 Department id field

 Id : departmentid
 Label : Department Id
 Type : Integer
 List : don’t check box

Now you need to use your previous work, the Employee data object, and create a field
for the Department object that lists Employees, to keep track of the employees in a
department. This can be done as follows:

 Department employee list field

 Id : employeelist
 Label : Employee List
 Type : com.group.retail.hremployeerewards.Employee (select in menu)
 List : check this box

The advanced feature of this field’s the ability to select an existing data object as the
Type and check the List box as shown in figure 3.18.

52 CHAPTER 3 Modeling process data
Figure 3.18 The final field for your Department object’s an advanced type that
uses the Employee object previously created, and it’s part of a list. You’ll need to
check the box next to List.

 This completes the Department data object with the fields name, department id
and employee list. Save your Department object, it should look like figure 3.19. Con-
gratulations, you’ve completed your entire example data model in this chapter and
you’ve done it in time to make your project manager happy by meeting the tight proj-
ect deadline!

Figure 3.19 This is what your Department data object should look like
(the order may differ for you) after completing all the fields you needed to
create, including the advanced list of employee objects for the Employee
List field.

53Complete your data model
 Now that you can create data models, including usage of a data object as a list
within another data object, the only question left’s how can you use existing data mod-
els from your organization? Imagine you want to import work done in other projects
that include data objects compatible with JBoss BPM projects, meaning they’re stan-
dard Java objects and implement serialization.

 In the next section, you discover how to do exactly that.

3.2.1 What to do with an external data model

When you’re working in a true enterprise organization, the chances of having the
option to create all your project artifacts as new development are rare. For example,
your enterprise probably has existing services that tie together its backend systems for
your BPM project to use. What you most often encounter’s the need to use data
objects from existing enterprise data models within your current BPM project. This
section shows you how to ensure that the data objects that haven’t been created by you
can be made available in JBoss BPM Suite for your entire project.

 This section doesn’t teach you to design or build an external data model, but it
assumes you’ve ensured it’s functionally ready to import into your JBoss BPM Suite
project. I take you through a sample external data model, showing you what it means
to be functionally ready for importing, import this external data model into the HR
Employee Rewards project you’ve been using in this chapter, and I show you how to
ensure it’s available to the entire project.

3.2.2 Your external data model brought to you by ACME

The problem’s that you need to make an existing part of your enterprise’s data model
available to your current new BPM project. To simulate this, I use the existing HR
Employee Rewards project you worked through with the Employee and Department
data objects already created as shown in figure 3.19. You import an externally devel-
oped data model into this project to meet the requirements that you defined.

 Imagine that the external data model’s a piece of another project within your
enterprise that provides for booking travel to a given destination. Within that travel
booking project you can book a hotel, and for your current project you’re expanding
the employee rewards process to include a hotel stay as a possible reward. The frame-
work of the travel booking project’s data model works nicely for your current project,
and you’re interested in reusing it here.

 This travel booking data model’s in the format of a Java archive, meaning that it
was pre-built before you added it to your project. The Java archive (JAR) file discussed
in the rest of this chapter’s a compressed set of the Java objects ready for deployment
and use in the JBoss BPM Suite server.

 Any external data model can be added to your project if it’s functionally ready,
meaning it must be plain Java objects that implement the Serialized class as covered in
section 3.1.5, and be built into a JAR file.

54 CHAPTER 3 Modeling process data
3.2.3 Using the artifact repository effectively

When you’re working in the project authoring perspective, you’re designing your data
model, but you don’t see a place to add an existing data model. The question forms in
your mind, ‘Where does one start importing an external data model once the model’s
provided?’

 Within your JBoss BPM Suite Business Central console’s a separate area reserved to
provide a listing of the artifacts associated with your projects. This view’s called the
Artifact Repository and is found in the Authoring menu as shown in figure 3.20.

Figure 3.20 The Artifact repository view can be
found in the Authoring menu and it opens a list
view of everything currently available to your
BPM projects. Click on Authoring and then
Artifact repository to open.

 This opens the artifact repository with its default list of artifacts that BPM projects
can depend upon or use. In the top right, you find the Upload button where you can
add external data models. Next to the upload button’s the icon refresh button, used
to reload the list in case any uploaded artifacts haven’t yet appeared in the list. Each
entry in the list’s an artifact that can be used in your BPM projects, and a few buttons
to explore those artifacts in greater detail. Each artifact has a Download button, which
provides you with a local copy of the listed artifact. The second button’s labeled Open
and provides a view of the artifact’s details. Initially, this list contains several default
entries, one being the JBoss Application Server CLI and several client libraries.

 Let’s upload our external data model, the ACME Travel Data Model, obtained from the
provided project.1 It’s assumed you’ve downloaded the project, followed the provided
instructions, and built your own JAR file. When you click on the Upload button in the top
left, a pop-up appears asking you to choose a file to upload, as shown in figure 3.21.

 This completes the import of your external data model, the ACME Travel Data
Model, but you can’t use it until you’ve added it to a specific project. Let’s look at how
you can do that.

1 The ACME Travel Data Model Project (https://github.com/effectivebpmwithjbossbpm/chapter-4-acme-travel-
data-model) provides you with instructions on how to install and build the data model as an external JAR file
which you can then import into your project in JBoss BPM Suite.

https://github.com/effectivebpmwithjbossbpm/chapter-4-acme-travel-data-model
https://github.com/effectivebpmwithjbossbpm/chapter-4-acme-travel-data-model

55Complete your data model
Figure 3.21 This is the pop-up you get when you click on the Upload button in
the Artifact repository. You’re asked to choose a file, which is the ACME data
model in your case, for uploading into JBoss BPM Suite’s artifact repository.
Follow the instructions in the ACME Travel Data Model project and select the
target/acmeDataModel-1.0.jar. Once you click on the small upload arrow icon
button, the entry for the acmeDataModel-1.0.jar should appear in the artifact
repository list along with the POM file. If not, refresh the view and you should
now see the model artifact appear. The POM file provides you with more
information on what the JAR file contains, viewable by using the Open button,
as I previously described.

3.2.4 How to use an imported external data model

The previously imported ACME Travel Data Model’s now listed in the artifact reposi-
tory, but we need to add it to our BPM project before we can use it. Return to your HR
Employee Rewards project by opening the Project Authoring perspective as shown in
figure 3.4, then click on the Open Project Editor button and open the Project Settings
menu to select the Dependencies view as shown in figure 3.22.

Figure 3.22 From the Project Authoring perspective, you’ll be able to add the dependency
on our imported external data model.

56 CHAPTER 3 Modeling process data
This opens the project editor’s dependency view, which is currently empty but has
options to add dependencies to this project. In figure 3.23 you can see an empty list-
ing of dependencies which are currently part of this project, but this changes after you
add in the ACME Data Model as this project’s first dependency. You can add a depen-
dency using one of two buttons:

 The Add button, which is for entering dependency information manually.
 The Add from repository button, which is for importing existing artifacts already

in the JBoss BPM Suite maven repository for use in the project.

 Let’s first look at the manual entry option before we use the add from repository.
Start by clicking on the Add button. This causes a pop-up to appear where you need to
manually fill in your dependencies details. It requires all the details a developer recog-
nizes as necessary to make your data object available to your BPM project, as shown in
figure 3.24. These are technical details added to your project to find the data objects
contained in the artifact you’re referencing. These are related to how the artifact’s
stored in the JBoss BPM Suite internal maven repository.

Figure 3.24 The Add button generates this pop-up where you’ll need to manually enter each
item asked for to complete the entry.

Figure 3.23 The project editor’s dependency view, used to view and add dependencies to your project.

57Complete your data model
 If you’re certain of the details for a dependency in your organization, you can
input all the fields needed, and your project has access to the data objects. Be careful
though, this data entry isn’t validated for you, and it’s easy to make a mistake when
manually entering this type of information. It’s recommended that you first add your
artifact to the internal repository and then add an existing entry from the artifact
repository. For example, let’s add the ACME Data Model you imported and see how
you can add this as a dependency.

 Click on the Add from repository button and a pop-up appears with a list of available
artifacts in the current artifact repository. In figure 3.25 we see the list of artifacts that
includes our previously added acmeDataModel-1.0.jar. You can add it to your project as
a dependency by clicking on the Select button.

Figure 3.25 The list of artifacts available in your repository are shown here with your newly imported
acmeDataModel-1.0.jar waiting to be selected.

 After selecting the external dependency, you see that the ACME Data Model entry
listed with the various details filled in for you, as shown in figure 3.26.

 Later when you’re ready to use this data model, it’s available for you to reference
from rules, processes, and other artifacts you generate as you complete your BPM
project. The way to use this model’s to point to the models exact package location, for
example importing it from the package com.jboss.soap.service.acmedemo.Flight to
reference the Flight data object.

58 CHAPTER 3 Modeling process data
Figure 3.26 The Acme Data Model dependency has been added into the list of dependencies for your project with
all the details automatically filled in for you.

3.3 Summary
 Every process project makes use of data provided by a data model.
 It’s easy to implement a data model object in JBoss BPM Suite data modeler

tooling.
 Data object creation’s a few menu-clicks away and you’re adding fields to data

objects.
 The source code editor provided in the data modeler can be a valuable learn-

ing tool for viewing your data model internals as you build them.
 Taking notes and other meta data can easily be added in the data modeler over-

view to flush out a data objects details.
 Within the data modeler overview’s a version history that can easily be used to

jump back to a previous version of your data object; select a version and con-
tinue editing.

 External data models can be imported by uploading into JBoss BPM Suite for
use in a project.

 Imported data models are stored in the JBoss BPM Suite internal maven reposi-
tory, making them available for your project.

 Complex data objects are quickly created by using other data objects in your
current data object as fields.

 Fields in a data object can be simple Java data types, other data objects, or lists
of data objects to provide flexibility in creating your data models.

 Developers can use web tooling to generate data objects and expand them with
persistence annotations, saving both time and tedious coding chores.

Chapter 4
Starting with business rules
Business logic guides the flow of work in a specific business domain to allow it to
function in a consistent, repeatable and predictable manner. It’s at the core of how
things are decided within the projects, within applications being built, and in pro-
cesses which are captured. It’s hard to imagine any sort of BPM suite of tools with-
out the capabilities to support the creation, management, and execution of
business logic within a BPM project. JBoss BPM Suite has these capabilities with the
supporting tools for you to create, manage, and deploy business logic.

 To implement business logic in an organization often means creating, in some
technical language, an implementation of that logic. This implementation turns
the business logic into application logic in the form of rules. These rules can be
written directly into each of your applications, but this leads to repeated use of the
same rules in many applications. It also means any change to a rule’s a change in
the application, and therefore requires a new release to use it. Finally, the rules
encapsulate business knowledge, and the best person to manage this knowledge is
the business user from that knowledge domain. If you take business logic and code
it into rules within applications, developers are now responsible for interpreting,
managing and maintaining the rules.

This chapter covers
 Understanding the basics of business rules

 Using JBoss BPM rule editors to design
business rules

 Implementing technical rules, guided rules
and test scenarios
59

60 CHAPTER 4 Starting with business rules
 The solution for these problems is to externalize business rules into JBoss BPM
Suite1 where you’ve tools to manage and maintain the lifecycle of rules outside of the
lifecycle of the applications using them. The goal of this chapter’s to put business
rules into the hands of the business owners in an easy to understand form, not as
application code. In this chapter I take you on a path to implement business rules
using guided tooling provided in JBoss BPM Suite. I walk you through technical and
guided rules, which are the first steps you take on the road to implementing your
application business logic. This requires more than implementing rules; you need to
ensure that the rules pass tests you set for them to ensure that the rules do what you
need them to do. Therefore, I teach you how to add test scenarios that exercise the
rules you’ve created. By centralizing the business rules and test scenarios in JBoss BPM
Suite, it becomes clear they’re maintainable by the knowledge owners who’re best
suited for this task.

 What’s beyond the scope of this chapter’s the exact syntax used for JBoss BPM
Suite rules, which can be found online2. The focus here’s to teach you what the tool-
ing does to help you easily implement business logic into business rules by using
examples I provide. These examples are presented in a pseudo-code format which is
easy to follow.

 Now imagine yourself as part of a team that implements the core business rules for
an organization that wants to capture business logic in an external system using JBoss
BPM Suite. When finished, all the processes and applications use a central managed
set of rules governing how your organizations business works. To kick off this project,
small tasks are assigned in which you take the given business logic and implement it in
each of the rule types provided for by JBoss BPM Suite. Figure 4.1 shows the path
taken to learn how to use the various guided editors and tooling to implement exter-
nalized business logic for your organization.

4.1 Business logic central to your process
Business logic in any organization can be found almost everywhere. It’s in the daily
tasks that employees perform, it’s found in the processes used to complete tasks, and
not surprisingly, it can be found in many of the applications being created.

 Let’s look at a simple example in an imaginary Human Resources (HR) depart-
ment. During discovery phases of a project that attempts to streamline the onboard-
ing of new hires, discussions arise around the task of validating a new hires
employment status. The input from the HR employee sounds something like this,
“When I examine the new hires paperwork, I’m looking for a copy of his/her identifi-
cation document such as a passport. If the passport’s from the US, as we’re a US com-

1 JBoss BPM Suite’s a super set product that includes the rules and events tooling that can also be found in the
JBoss Business Rules Management System (BRMS) product. In this chapter I only reference the JBoss BPM
Suite when discussing business rules.

2 The syntax for constructing rules using MVEL language can be found in the free online documentation;
here’s the section on rule syntax supported by the version used in this book: https://access.redhat.com/docu-
mentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#all_about_rules

https://access.redhat.com/docu men tation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#all_about_rules
https://access.redhat.com/docu men tation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#all_about_rules

61Business logic central to your process
Figure 4.1 The overview of the path you take in this chapter’s outlined here. With the provided business
logic, you implement business rules leveraging JBoss BPM Suite.

pany, I know that the new hire can work if his/her age’s over 18. If I find a foreign
passport as identification, then more digging into the employment requirements in
the US is required for that specific country.”

 A lot of business logic‘s found in this discussion. It’s easy to program this directly
into our process application using the company standard Java programming lan-
guage. The problem with this appears down the road in the future, when applications
or processes need to use some of the same business logic contained here. The strate-
gic decision to externalize business logic from new applications is our starting point;
let’s see what business rules you find from the discussion above.

4.1.1 From logic to rules

A key indicator of business logic and where you start to identify rules in code or dis-
covery discussions as shown above, is to look for if-then, or when-then constructions. In
these cases, you test for a condition to be met and, when it’s met, it results in some sort
of action. This is a rule.

 The easiest way to think about a rule’s that there’s a premise and a conclusion. The
premise is the set of one or more conditions and the conclusion’s one or more actions
that result from the conditions being met.

62 CHAPTER 4 Starting with business rules
 Now, without thinking too hard about the formal rule syntax, let’s extract some of
the business logic you see in the previous discussion with our HR employee. Let’s start
by looking at each sentence first, then extract the logic found into simple rules using
natural language.

 “If the passport is from the US, as we’re a US company, I know that the new hire
can work if his/her age is over 18.”

The rule here’d be based on checking some of the employee data, which is a hint of
the data objects which are available to you in this domain:

WHEN
 Employee age is 18 or higer
 Document is US passport
THEN
 Do nothing

 “If I find a foreign passport as identification, then more digging into the
employment requirements the US is needed for that specific country.”

The rule here’d be a little different:

WHEN
 Employee age is 18 or higher
 Document is not US passport
THEN
 Set Employee needs work visa

When you look closer at these rules, you notice that there’s a specific structure to a
rule as shown in figure 4.2.

Figure 4.2 The basic structure to a rule includes new terminology such as LHS and RHS.

63Business logic central to your process
 The term left-hand side (LHS) is used when talking about the conditions of a rule.
The rule operates on facts which are data objects placed into memory from your
applications. When the conditions or LHS are met, then the rule fires. When a rule
fires, that means that the right-hand side (RHS) or actions are executed.

4.1.2 Inside the rule engine’s brain

These rules with LHS and RHS need some sort of brain or engine to process the match-
ing of facts to their conditions. This process uses an Inference Engine, the brain behind
our rule processing system within JBoss BPM Suite. This inference engine matches facts
to conditions in your rules and when they match, those rules are fired. Fired rules exe-
cute the actions contained within, which either performs an action external to the appli-
cation or modifies one or more facts within your system. Figure 4.3 shows you an
architectural overview of the inference engine as it is used in JBoss BPM Suite.

Figure 4.3 The inference engine in architecture used by JBoss BPM Suite.

 The rules are loaded into production memory and the facts are put into working mem-
ory. Production memory doesn’t change, but working memory’s constantly being
updated when facts are added, removed or modified as rules are fired. The pattern
matcher is at the center of the inference engine and uses pattern matching to find rules
with conditions that can be met. When the conditions are met, the rule’s added to an

64 CHAPTER 4 Starting with business rules
agenda, which is a listing of the actions to be fired. Once all the pattern matching’s
done and the agenda’s complete, the rules on the agenda fire one at a time. Figure
4.4 illustrates this process and the order of execution. If a rule firing causes any
change in the facts in working memory, the agenda’s erased and the pattern matching
starts building a new agenda based on the new facts being applied to the same rules.
This continues until there are no more conditions being met and the agenda’s empty.

Figure 4.4 The overview of the JBoss BPM Suite processing of rules, facts and agenda to determine
which rules conditions are met and how they’re activated.

 These are the basics rules you need to understand; what an inference engine is,
and how it processes your rules. Now let’s look at taking a few sample rules and imple-
ment them in the available JBoss BPM Suite tooling, starting with technical and
guided rule editors.

4.2 Considering technical and guided rules
It doesn’t matter which of the editors are used, they simplify the coding of rules in the
JBoss BPM Suite’s rule language. This language’s known as the Drools Rule Language
(DRL) and can be directly coded into files that developers can produce in their devel-
opment tools they use for coding. These files end with a *.drl postfix notation, indicat-
ing their rule contents.

 In the early days of JBoss rules development, this DRL coding by developers was
the standard way to implement business rules. This is a powerful way to extract busi-

65Considering technical and guided rules
ness logic, as we’ve discussed, but it doesn’t liberate the rules from the domain of the
developers. To bring DRL to the business users or architects that might not want to
dive into the details of DRL syntax, JBoss BPM Suite brings you several web based edi-
tors and wizards to help. Let’s look at the first two, the technical rule editor and the
guided rule editor.

4.2.1 Technical rules for developers

The first option available’s for developers in that it’s an editor that exposes the DRL
syntax directly to the user. This isn’t for everyone and, in all honesty, should be
avoided if possible. The idea that you’d want to code your rules in the online web edi-
tor when, as a developer, you’ve your own development environment1 isn’t realistic.
That being said, it can be quite handy to quickly edit a technical rule that a developer
has added to your project by using the technical rule editor.

 Let’s look at what creating a technical rule entails with our HR example from
above. The first logic we extracted in section 4.1.1 was:

WHEN
 Employee age is 18 or higer
 Document is US passport
THEN
 Do nothing

 This rule can be implemented as several technical rules by splitting it down into
smaller pieces. This is a good practice as it allows each rule you create to capture one
specific piece of logic, and when you insert fact you can apply them to a set of rules,
each one testing a small bit of business logic.

 To get started, I provide you with an example project for this chapter that contains
a data model, rule artifacts, and all the test scenarios created in this chapter for you to
reference. You can examine the completed project artifacts as you read or learn by
building them yourself. Install the provided code project (https://github.com/effec-
tivebpmwithjbossbpm/chapter-5-rules-demo) for this chapter and note, as shown in
figure 4.5, the data model already set up.

 If you need to review how to open the Project Authoring perspective, the please
review chapter two. The first data object you can review’s the Document object, which
opens when you click it, looking like figure 4.6.

 Review the fields available and pay particular attention to the description added in
the properties panel for each type to understand their usage. This is going to be a sim-
ple data object for our example and contains fields like Document.orgin which is an
open String. I provide information on the field restrictions in the description to allow
you can design rules to validate field data later.

1 When working with JBoss BPM Suite, there’s a backing code repository based on Git which is accessed from
outside the web console with a developer IDE like Eclipse. Having code completion and other tooling to sup-
port you in rule creation from scratch is invaluable. Most developers won’t be using the technical rule editor
provided by JBoss BPM Suite.

https://github.com/effectivebpmwithjbossbpm/chapter-5-rules-demo
https://github.com/effectivebpmwithjbossbpm/chapter-5-rules-demo

66 CHAPTER 4 Starting with business rules
Figure 4.5 The project explorer here shows
you the hr-example project data model found
in com.redhat.demo.hr_example with a
Document and Person object defined.

Figure 4.6 The Document data object in the HR example.

 The second data object’s Person and you can open by clicking to review the data
fields. Here again, pay attention to the properties panel with the description being used
to clarify expected field contents. In figure 4.7 you see the Person data object with the
document field in the properties panel on the right. This field’s of the type Document
from figure 4.6 which allows us to embed the Document object inside the Person object.

Figure 4.7 The Person data object in the HR example.

67Considering technical and guided rules
 Now I go back to the default package level in our project using the link in the Proj-
ect Explorer on the left. At this level you no longer see the data objects as they’re
down at the package level com.redhat.demo.hr_example.

 At this point, before starting to create your first technical rule you might be won-
dering where to begin? By looking at the two conditions you find the facts you expect
and can define what to test in your first rule.

 1. Employee age is 18 or higer
 2. Document is US passport

 I always want to validate the data given; name the group of rules validation. The
focus here’s on age of the person in line one, and on the origin of the document in line
two. Let’s create a few technical rules for the age validation.

 The first technical rule or DRL file you create’s a field validation rule to ensure
that the person object’s age field’s 18 or higher. If the age’s 17 or under, you know
right away that that person needs a special visa to work. Click on New Item, selecting
DRL file as shown in figure 4.8.

Figure 4.8 In your project, select the DRL file from
New Item menu to create a new technical rule.

The pop-up that appears asks you to name this new technical rule and which package
level to place it in. Enter the details as shown in figure 4.9 and click on the OK button
to open the rule in the DRL editor.

Figure 4.9 The pop-up where you create the new DRL rule file, providing the
name Validate Age and package set to <default>.

68 CHAPTER 4 Starting with business rules
 You’ve an empty DRL file editor in front of you, which accepts any text you add
and provides you with almost no help beyond a single Validate button. Enter the pack-
age name at the top to ensure your data objects are available. This way you don’t have
to use the long package names shown on the left side of the editor. Then enter the
rule as shown in figure 4.10.

Figure 4.10 The DRL file editor with the Validate Age rule for when the age is 18 or older, no work
visa required.

 The rule has a name attribute and this appears in all reporting such as in a test,
which create to validate the rule logic. This rule’s called, “Validate Age: Requires No Work
Visa”, which might seem wordy but a good practice’s to be expressive in your rule
names to ensure that others understand what your rule’s doing. This rule belongs to a
group called validation. Grouping your rules with the attribute ruleflow-group identifies
the validation rules as the ones you supply with data objects to determine if they’re cor-
rect. The attribute no-loop is needed to prevent your rule from being re-activated due
to changes made to the facts in the condition part of the rule. You can see the person
object has a field that gets modified, which would cause our rule to activate again on
the changed facts. Finally, you arrive at the heart of the rule, your condition’s that a
person needs to have an age of 18 or higher, causing the actions of setting the work
visa required field to false.

 Finally, a good piece of advice when using any of the editors you find in this Busi-
ness Central console: save your work often. Do this now by clicking on the Save button
in the DRL editor and filling out the check in comment to state that you’ve created a new
DRL rule. A pop-up at the top of the screen verifies that your work’s been saved when
you click on the SAVE button.

4.2.2 Testing a technical rule

Now you’ve your first technical rule, but are you sure it works? To ensure it does, you
can create a test scenario by clicking on New Item, selecting Test Scenario as shown in fig-
ure 4.11.

69Considering technical and guided rules
Figure 4.11 In your project, select the Test Scenario
from New Item menu to create a new guided test.

 The pop-up that appears asks you to name this new test scenario and which pack-
age level to place it in. Enter the details as shown in figure 4.12 and click on the OK
button to open the guided test scenario editor.

Figure 4.12 The pop-up where you create the new test scenario, providing
the name Test Validate Age and package set to <default>.

 The guided test scenario editor is now ready for you to start implementing the test,
populate it with data and setting your expectations for the outcome based on the rule
you want to test. You need to start by importing data objects you need for your test;
click on the Data Object tab to access the import screen as shown in figure 4.13.

70 CHAPTER 4 Starting with business rules
Figure 4.13 To import data objects from your model to use them in a test scenario, click on Data
Objects tab, adding a new item places it in the list that was initially empty.

 Click on the +New item button. Select the person object from the Import menu in
the Add Import pop-up as shown in figure 4.14.

Figure 4.14 The add import pop-up contains a list of data objects available to
you. Select the Person object for use in your test scenario.

 After clicking on the OK button, the Person object listed as an import’s shown in
figure 4.15. Now start defining your person fact by returning to the Editor by clicking
on that tab.

Figure 4.15 The Person data object’s now
listed as imported for use in this test scenario.

71Considering technical and guided rules
 Test if the employees age’s 18 or older, if it is, set that employees workVisaRequired
to false. The test’s only focused on the positive test case where you validate the desired
outcome. On the left side of the guided test editor you see green plus icons next to
GIVEN and EXPECT as shown in figure 4.16.

Figure 4.16 The test scenario
waiting for you to define facts to
be inserted and the expectations
after any specified rules you
create have fired.

 You start with the GIVEN plus icon, clicking it to open a pop-up that indicates what
rule flow group you want to be tested. In this case you type in validation as shown in
figure 4.17.

Figure 4.17 The test needs
to be given a rule flow group
to provide you with a set of
rules to apply your facts to,
here validation.

 When you click on the Add button next to the Activate rule flow group, you see it
added to your test scenario as shown in figure 4.18.

 Remember the advice to save your work often, this is a good time to save it with an
appropriate commit message using the SAVE button at the top of the test scenario editor.

 Now you can start defining the data in the form of a Person object with the age
field set to 18. Clicking on the same green plus icon gives you the same pop-up as
before, but now you use the Insert a new fact section to select Person and give it the Fact
name as shown in figure 4.19.

72 CHAPTER 4 Starting with business rules
Figure 4.18 The activation rule flow group’s added to the test scenario in the
GIVEN section.

Figure 4.19 Inserting a new Person
fact with the name ‘p’ to allow you to
reference it later in the test scenario.

 The use of a fact name acts like defining a variable. Later in the test scenario, when
you want to check if the person’s been modified, you reference the fact you inserted.
You might be getting the feeling that it’s now possible to define multiple person facts
and give them different names, allowing you to cover more test cases in your scenario.
To insert the person fact, click on the Add button and it’s inserted into your test sce-
nario as shown in figure 4.20.

Figure 4.20 The test scenario has the Person object named ‘p’ added as the
fact to be inserted in this test.

73Considering technical and guided rules
 Now you add a field by clicking on the Add a field text, which displays a pop-up as
shown in figure 4.21. You need to find the age field in the drop-down menu and click
on the OK button.

Figure 4.21 When adding a field from the pop-up, select it from the drop-down menu.

 This adds it to the person fact with a pencil icon ready for you to click to add a
value to the age field. In figure 4.22 you see that after clicking on the pencil icon a
pop-up appears to define that field.

Figure 4.22 The age field has been added, now you can click on the pencil icon next to
it to define what’s assigned to the field.

 In figure 4.23 you see that you can click on the Literal value button to be able to set
a number value in that field.

 Add the value 18 to the empty text box next to the age field to test this persons’
legal working age. The test scenario now looks like figure 4.24 with the facts defined
and the rule flow group activation.

74 CHAPTER 4 Starting with business rules
Figure 4.23 To define the age field value as a
number, you need to click on the Literal value button
in the pop-up.

Figure 4.24 The age field’s give a text box for you to add the literal value of 18.

 Again, save your work with the button at the top of the test scenario editor as this
completes the GIVEN section of this test scenario. Ignore the CALL METHODS for
now, this is for advanced actions on facts which goes beyond the scope of our exam-
ple. You can also leave the menu item Use real date and time as it’s defined.

 To finish the rule, you need to decide what your expectations are after the facts
have been applied to the rule flow group you’ve set up above. If you remember, when
the person given’s 18 or older, then the workVisaRequired field for the person being
evaluated’s to be set to false. Let’s do this by clicking on the green plus icon next to the
EXPECT section. A new pop-up appears to add a new expectation. The first thing you
expect’s that your rule fires; select the validate age rule that requires no work visa as
shown in figure 4.25 and click on the OK button to add it.

 At this point you’ve yet to check if the person’s been modified to indicate that no
work visa’s required, but you can run this test scenario. First save your work by clicking

75Considering technical and guided rules
Figure 4.25 The new expectation pop-up where you can select the rule you expect to fire with the
given facts in this test scenario.

on the SAVE button at the top of the test scenario editor, you can’t do this often
enough to ensure you don’t lose work while in a web based editor. Figure 4.26 shows
you the status of your test scenario.

Figure 4.26 Add the rule you expect to fire when the given facts are applied and keep the default
rule to fire at least once.

 In figure 4.27, you can see the results of clicking on the Run scenario button, which
runs the test, inserting facts, activating the rule flow group you defined and validating
the expectation that the rule fires at least once. A green bar then appears in the
Reporting panel at the bottom of your screen.

Figure 4.27 A successful test run appears
in the reporting panel at the bottom of your
screen.

 If you want to see what happened in detail, open the Audit log by clicking on it at
the top of the test scenario. It expands to show technical details around activation of
your rule flow group, inserting facts, deleting facts, rule activations and more. See fig-
ure 4.28 for an example of your test scenario’s audit log after the above test run.

 Now let’s check if the person object you inserted with name ‘p’ has been modified
to indicate that the work visa isn’t needed. Click on the EXPECT green plus icon to
add a new expectation, this one being a fact value. The fact you need to add’s our per-
son labeled ‘p’, which is the only fact available and selected by default in the provided
menu. Click on the Add button to insert into the test scenario as shown in figure 4.29.

76 CHAPTER 4 Starting with business rules
Figure 4.28 The audit log for a test scenario run shows the rule flow group activation, session
being setup, facts inserted, facts deleted, rule firing and more.

Figure 4.29 The person ‘p’ has been added to the expectation, but still need to check if the field
value for work visa required has been set properly by the rule.

 Click on the line Person ‘p’ has values for the pop-up to choose a field to add. In fig-
ure 4.30 you see how to select the field workVisaRequired from the drop-down menu.

Figure 4.30 The pop-up to choose a field to add’s used now to select the
workVisaRequired field.

 By clicking on the OK button, you add the field to your test scenario with the
defaults set to equals true. Be sure to save the work you’ve done and in figure 4.31 you
can run the completed test scenario by clicking on the Run scenario button. Wait a
minute, did you get the same red bar at the bottom in reporting and a message stating
“There were test failures” when you ran your test? The test scenario shows green check

77Considering technical and guided rules
marks next to the parts of the expectations that passed, but yellow warning signs next
to the failed expectations and even include what the Actual results were.

Figure 4.31 The test scenario ran with errors. The work visa was expected to be true, but was false.
The errors have yellow warning signs.

 Fix the test by setting the expectation of work visa required to false and re-run the
test by clicking on the Run scenario button. Now you can expect the test to produce a
green bar in the reporting panel as in figure 4.27. If not, then double check that you
didn’t make any typing errors, removing any mistakes with the small minus icons next
to the fields in the test scenario. Remember to save your work once you finish making
changes.

4.2.3 Extending the technical rule and test scenario

The rule only covers persons 18 years or older and makes sure that the work visa
required field’s set to false. What happens if the person’s under 18 years old?

 What happens is that the person’s age field doesn’t match the current rule, there-
fore it doesn’t fire and the work visa required field’s not set to the needed value of
true. To fix this you can add a second rule to the same DRL file as shown in figure
4.32. Once you’ve typed this into the DRL rule editor, be sure to save your work.

Figure 4.32 Add the second rule to
your DRL file as shown here to ensure
a work visa’s required if the person’s
under eighteen years old.

78 CHAPTER 4 Starting with business rules
 Now let’s finalize the test scenario by including test facts that ensure a person
under 18 years old needs a work visa. To do this you insert a new fact, a person, and give
it a fact name of ‘p2’ and click on the ADD button. This is as you did for the person
object ‘p’. A second person column’s added with ‘p2’ along with a pencil icon for
clicking on to add a literal value which inserts a test box. Put the value of 17 in the text
box. Save your work and notice that the test scenario can be run producing a green
bar in the reporting pane.

 What’s missing’s the expectations for the person object ‘p2’; add them by selecting
the rule for validate age that requires a work visa. Expect this rule to fire at least once, like
the first time you added a rule firing expectation. Then add a fact value of ‘p2’ by select-
ing it in the drop-down menu and clicking on the Add button as shown in figure 4.33.

Figure 4.33 Add new fact value p2 from
drop down menu as our new expectation
for the second person object.

 Click on the Person ‘p2’ to choose a field to add to your second person. The
workVisaRequired field can be found in the drop-down menu, click on the OK button to
add it. By default, it’s set to expect the value true. This completes the test scenario for
the Validate Age rule, and you should save your work and validate that it now has test
coverage for both over and under the age limit for needing a work visa by running the
scenario. Figure 4.34 shows you the completed test and scenario run.

 Now let’s move on to creating guided rules for validating the second part, if you
remember, which was that the document needed to be a US passport or a work visa.

4.2.4 Guided rules for everyone

Although technical rules using the DRL file editor are possible, they tend to be trou-
blesome when you can easily make a mistake while typing out the rules. Rule design
can be achieved by less technically inclined with the guided rule editor. It provides you
with the same experience for rule design as you encountered when designing your
test scenario in the previous section, that of a guided path through your rule creation.

 Let’s look at what creating a guided rule looks like, but first a reminder of the logic
you extracted in section 4.1.1:

WHEN
 Employee age is 18 or higer
 Document is US passport
THEN
 Do nothing

79Considering technical and guided rules
Figure 4.34 Test validate age scenario completed and running successfully.

 This rule’s to ensure that the document‘s a US passport, otherwise the employee
needs a special work visa. You can continue where you left off in the project and create
a guided rule from the New Item menu as shown in figure 4.35.

Figure 4.35 Guided rule creation starts in the new
item menu in project authoring perspective.

80 CHAPTER 4 Starting with business rules
 A pop-up appears for you to provide the details to create a new guided rule. Fill in
the name for the guided rule as Validate Document Origin and leave the package in the
default setting as shown in figure 4.36.

Figure 4.36 The pop-up for
creating a new guided rule.

 When finished, click on the OK button to open the guided rule editor with a blank
rule. The first thing you need’s to import a Document object for this rule; click on the
Data Objects tab. Do you recognize it? Yes, it‘s the same interface you saw while creating
the test scenario for your age validation rule. Add an import for the Document object
by using the new item button as shown in figure 4.37 and then switch back to the
guided rule editor by clicking on the Editor tab.

Figure 4.37 Import a Document
object using the new item button like
you did in the test scenario.

 Save your guided rule and then look at the guided rule which is in front of you.
The editor presents you with a WHEN - THEN construction and on the far right they
both have the same green plus icons you saw in the test scenario editor. Start with the
WHEN section of your rule by clicking on the green plus icon to generate the pop-up
to add a condition to this rule. In the pop-up, select Document and click on the OK but-
ton as shown in figure 4.38.

81Considering technical and guided rules
Figure 4.38 Add a condition to your rule
by selecting the Document object and
click on the OK button.

 The guided rule editor has now added a first condition line labeled 1. Click on the
document to open a pop-up for you to modify a constraint. You want to apply a con-
straint to the origin field of this document which allows you to validate that it originates
from the US. Figure 4.39 shows how to select the origin field to start adding a constraint.
In the guided rule editor, you see now the origin field added with a drop-down menu
next to it in the condition of the rule. When you open the drop-down menu next to the
origin field it provides you the options for how you can constrain this field.

Figure 4.39 The pop-up that you can use to select the field you want to constrain.
Selecting the origin field for your Document and the pop-up closes, leaving the origin
field added to your conditions section of this rule.

82 CHAPTER 4 Starting with business rules
 As shown in figure 4.40, select equal to from the drop-down menu to constrain the
origin field to be exactly the value for a US passport. The final piece of your con-
strained document origin field’s to specify what value represents a US passport.

Figure 4.40 The document object’s origin field now has a pull-down menu. Select as
shown the equal to constraint.

 Once the constraint’s selected, an empty text box appears for entering the value of
US as shown in figure 4.41. Now to look for document objects with the origin field set
to US.

Figure 4.41 Adding the final
value of US to the text box
means that the origin field of any
document needs to be equal to
that value.

 Now let’s take a step back as the requirements have changed a bit to include the
Netherlands (NL) as a document origin that also doesn’t require a work visa. The only
change needed’s to modify the document origin constraint by creating a comma sepa-
rated list that contains only “US, NL” in it. You might think that this rule needs to con-
strain the origin field such that it’s only contained in the comma separated list, but you
cover more of your domain by doing the opposite as shown in figure 4.42.

 Instead of walking you through the exact steps, you’ve now enough knowledge to
make the change yourself. Not to be forgotten, you need to click on the green plus

83Considering technical and guided rules
Figure 4.42 The adjusted rule where you’ve constrained the document origin field excluding all values
except what’s in the comma separated list of US and NL. It’s also important to set the options as shown.

icon in the options section at the bottom of the rule to add the no-loop and ruleflow-
group with validation options. The rule’s now completed and ready for testing to
ensure your rule looks like figure 4.42.

4.2.5 Testing a guided rule

Nothing different from creating a test for a guided rule exists than the technical rule
as shown in section 4.2.2. Because you’ve been given the ability to create and populate
a test scenario previously, I want to provide you with a list of steps to be completed and
let you create the test scenario yourself.

 Start by adding two sets of facts. The first’s to test if a document in the set of US or
NL doesn’t change the work visa required field value. The second set of facts test if a
document outside the set of US or NL causes the rule to fire that changes the work
visa required field value.

 Steps to create guided rule test

1 Use new item menu to create a new test scenario called Test Validate Document.
2 In the Data Objects tab, add a document and person object.
3 In the Editor tab, in Given section of the test add the following:

a Add a document with fact name d.
i Add the field origin to document d, set its literal value to US.

b Add a person with fact name p.
i Add the field document with the value =d.
ii Add the field workVisaRequired, set its literal value to true.

c In the Given section of the test add a second document with the fact name
d2.

i The origin field is set to GB.

84 CHAPTER 4 Starting with business rules
d Add a person with the fact name p2.
i The document field’s set to the value =d2.
ii The field workVisaRequired is set to value false.

e Add a rule flow group activation set to value validation.
4 In the EXPECT section of the test scenario add the following:

a Expect Validate Document Origin and set this as fired this many times: 1.
b Expect person named p to have the field workVisaRequired set to true.
c Expect person named p2 to have the field workVisaRequired set to true.

5 Ensure that all rules may fire.
6 Don’t forget to save your test scenario!

 Compare your results with the test scenario in figure 4.43 and click on the Run sce-
nario button to ensure you get a green test run report.

Figure 4.43 The final test scenario to validate document origins. It includes two sets of
facts which are tested for the positive inclusion of the origin in the expected set of data
and the negative.

85Summary
 This chapter introduced you to creating technical rules, guided rules, and showed
you how to verify them by writing effective test scenarios. These aren’t yet used in a
process, that comes later when you start to design your business process. For now, the
test scenarios validate that the rules are ready for use by your project.

 It hasn’t covered all the possibilities with regards to rule creation in JBoss BPM
Suite as there remains more to explore after reading this chapter. I hope you continue
to use the basic skills taught here to further expand your ability to use rules in the
many forms provided by JBoss BPM Suite.

4.3 Summary
 You always need to capture business logic in rules for a BPM project.
 Business logic’s used to extract business rules that can be implemented in one

of the available rule types.
 Externalizing business logic’s done by collecting rules in JBoss BPM Suite that a

process can then use.
 Rules need to define the condition that must be met, before the corresponding

actions are taken.
 Conditions are defined on the data model based facts, which attempt to match

certain fields and values.
 Actions that result from conditions that match a given set of facts can be almost

anything, from modifying existing facts to printing a message to a log file.
 The JBoss BPM rule engine’s the brain behind business rules execution.
 The rule engine matches facts to conditions, creates an activation agenda and

processes the rule actions that need to be taken.
 Technical rules are the rawest form of a rule where you see the actual rule syn-

tax in the DRL editor.
 Technical rule editor’s used to write rules in free text editor using the DRL syn-

tax and is mainly targeting a developer.
 Guided rules provide a systematic approach to creating rules without having to

be exposed to the underlying rule syntax.
 Guided rules provide an easy way to quickly create business rules, targeting the

business level user.
 Test scenarios are used to validate that the rule logic’s implemented as desired.

Chapter 5
Creating complex
 business rules
The previous chapter introduced business logic, rules, and how to implement a few
basic examples. The next step’s to expand your capabilities with more complex
rules and look into how more advanced rule implementation can make your life
easier. In this chapter, I take you farther into the world of rules by introducing you
to the uses of the following complex rule solutions:

 A domain specific language (DSL)
 A rule designed using a DSL
 A decision table
 Test scenarios for each of the rules to validate correctness.

 Although you don’t have to read chapter five before this one, it’s recommended
because I won’t be explaining test scenarios or the guided rule editor in as much
detail this time around. For example, I focus instead on sharing the knowledge of
what the differences are between using the guided rule editor with a domain spe-
cific language instead of repeating basic guided rule editor usage.

This chapter covers
 Creating complex business rules

 Implementing domain specific language for
use in creating guided rules

 Implementing business rules in decision
tables and validating with test scenarios
86

87Complex domains as natural language rules
 What’s not covered in this chapter are the remaining rule implementation choices
found in the New Item menu, such as a Guided Decision Tree, Guided Rule Template, Guided
Score Card and Score Card. It isn’t that these lack value, but I chose to highlight the most
common rule implementations in this book to cover most situations encountered in
your BPM projects. The rest go beyond the scope of this book and are left to the
reader to research.

 Before you get started on this chapter, I’ve provided you with an example project
for this chapter that contains a data model, rule artifacts, and all the test scenarios cre-
ated in this chapter as a reference. You can examine the completed project artifacts as
you read, or you can learn by building them yourself.

 Install the provided code project (https://github.com/effectivebpmwithjbos-
sbpm/chapter-6-complex-rules-demo) for this chapter and note, the data model’s
already set up. Feel free to create the rules and test scenarios as I teach you how, or fol-
low along with the completed artifacts as examples in the demo project.

 Now let’s pick up where you left off working on the same project requirements that
are part of your process improvement project around the human resources (HR)
department employee onboarding, see chapter four section 4.1 for details. In Figure
5.1 shows the path taken to expand your knowledge of the rules tooling for complex
rule implementation. I teach you how to implement a DSL, then how to apply the
DSL in the guided rule editor to create a rule and finally how to implement rules in a
decision table.

5.1 Complex domains as natural language rules
Your journey to create business rules for more complex domains involves, in this sec-
tion, something known as a DSL. The definition of a DSL’s, “A machine-processable lan-
guage whose terms are derived from a domain model and that is used for the definition of
components or software architectures supporting that domain.“1 This definition can be simpli-
fied as you design a language which is easy to translate into rules, but remains human
readable for experts in the domain. You design a DSL in this chapter for our human
resources project that allows a human resource domain expert to design rules in
almost natural language, yet the rules can be parsed into a programing language that
the rule engine can evaluate during runtime.

 The given example requires the use of a DSL to allow a guided rule, using this
DSL, to act as a structured design experience for knowledge workers in that domain.
Let’s look at your example and use the DSL editor to create a DSL based on this chap-
ter’s employee onboarding example. This DSL forms the foundations for validating
various aspects of data being processed.

1 This definition’s as found online (http://www.yourdictionary.com/domain-specific-language) and is much
broader and a more simplistic translation’s presented in this section.

https://github.com/effectivebpmwithjbossbpm/chapter-6-complex-rules-demo
https://github.com/effectivebpmwithjbossbpm/chapter-6-complex-rules-demo
http://www.yourdictionary.com/domain-specific-language

88 CHAPTER 5 Creating complex business rules
Figure 5.1 Business logic’s provided to your project for designing rules. In this chapter, you design
complex rules using a domain specific language (DSL), create a rule using the DSL and create a
decision table.

89Complex domains as natural language rules
5.1.1 Domain specific languages to ease rule design

The existence of a DSL can be attributed to the desire of capturing the way a person,
in their daily work, talks about their world. DSLs are used in JBoss BPM Suite to create
a rule language that captures the problem domain in the words used by people oper-
ating in that domain.

 Most often, you find the need for an DSL when attempting to abstract away from
Java or MVEL1 based rules syntax. The desire’s to present rule construction to a busi-
ness user in such a way that formulating specific rules happens in almost natural lan-
guage constructs.

 The rule engine takes a set of DSL definitions, which are sentences that can be con-
verted to DRL2 rule constructs, which is the technical rule language syntax needed by the
rule engine. It’s another way of saying, let’s put a layer of simplicity between the rule syn-
tax and the business user. This is due to business users being the best to understand
their own domain language when talking about business rules related to their work.

 Most often a DSL’s created by a developer, someone with a deeper understanding
of the rule syntax to present to the domain experts, who use the natural language sup-
plied to construct their business rules. This doesn’t preclude another type of person
from constructing a DSL, but it takes a greater understanding of the rule syntax than
that person might already have.

 A more detailed look at JBoss BPM Suite DSL documentation’s found online,3 but
for now I dive right in and help you start creating a DSL.

5.1.2 Your first DSL

With the introduction to this section in mind, you’ve decided to apply a DSL to the
following problem in your project. The current technical and guided rules you cre-
ated have only validated the age in relation to the document origin for employment.
It’s possible in this project for an employee to be classified, purely on their age, into
one of three categories.

 Standard – employees who receive the normal amount of vacation days.
 Senior – employees who receive extra vacation days after a certain age’s reached.
 Unknown – employees who’ve yet to be classified in the system.

 A DSL makes this rule one that the HR business owner can manage as the age
brackets shift periodically when the laws around employment change. By making

1 MVFELX Expression Language (MVEL) is a dynamically / static typed, embeddable expression language and
runtime for the Java platform. As previously mentioned in the introduction to chapter four, the details and syntax
for constructing rules using MVEL language can be found in the free online documentation; here’s the section
on rule syntax supported by the version used in this book: https://access.redhat.com/documentation/en/red-
hat-jboss-bpm-suite/5.4/single/development-guide/#all_about_rules

2 Drools Rule Language (DRL) has been discussed in chapter four section 4.2, refer to that if you need to
refresh your knowledge.

3 Discover all the details behind DSL syntax in the product documentation, https://access.redhat.com/docu-
mentation/en/red-hat-jboss-bpm-suite/5.4/single/development-guide/#sect_domain_specific_languages_dsls

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#all_about_rules
https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#all_about_rules
https://access.redhat.com/docu men tation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#sect_domain_specific_languages_dsls
https://access.redhat.com/docu men tation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#sect_domain_specific_languages_dsls

90 CHAPTER 5 Creating complex business rules
them almost natural language rules with a DSL, the rules can be used by applications
as they’re maintained by business owners in the form of guided rules.

 Let’s examine the rules which are applied to the age of an employee in this com-
pany to determine their seniority as follows:

 “If the employee’s between 18-40 years old, then they’re classified as standard.”

The rule here’s based on checking and modifying employee data:

WHEN
 Employee age is between 18 and 40 years old
THEN
 Employee type is standard

The other age range’s 41-65. This rule would look like the following:

WHEN
 Employee age is between 41 and 65 years old
THEN
 Employee type is senior

In figure 5.2 you see the completed DSL with each of the rules outlined here repre-
sented to allow rule creation to be done using almost natural language. The rest of
this section teaches you to create this DSL and explains what each line does.

Figure 5.2 The completed DSL, consisting of four lines of language to provide the natural
language for rule developers to design the rules discussed.

Start by creating the DSL for creating guided rules to cover the above business logic.
Select from the menu New Item the entry DSL definition, as shown in figure 5.3.

Figure 5.3 Open a new DSL definition in the New Item
menu from your project.

91Complex domains as natural language rules
 The pop-up’s presented and you give the DSL definition a name as shown in figure
5.4. When you click on the OK button to submit your naming, the DSL editor opens
on your screen for you to start creating your DSL.

Figure 5.4 The popup to create a new DSL definition shown here for you to enter
the name Employee Type DSL and submit by clicking on the OK button.

 What you should notice first in figure 5.5 is that this editor reminds you of the
technical rule editor in that there’s little help in creating a DSL. Indeed, it’s a free
form text box that lets you type in any text you see fit to define a DSL. You can type
these lines into your DSL editor, then using the validate button to ensure the syntax is
correct before saving the DSL. Now let’s examine each line with the above structure in
mind to see how it validates the employee type information in this project.

Figure 5.5 This is the Employee Type DSL with each line annotated for further discussion in this
section.

 The basic idea with a DSL’s the same as a rule, it has a WHEN section with condi-
tions that need to be matched by facts and THEN section with actions to be taken
when the conditions are met. Each line needs to start with a WHEN or THEN, fol-
lowed by a natural sentence that you expect the user of the DSL rule can select. This is
followed by an equals sign (=), which starts the condition rule syntax represented by
the previous sentence. You can create multiple WHEN lines to build more complex
conditions and multiple THEN lines to cover more complex actions.

92 CHAPTER 5 Creating complex business rules
 The first line in figure 5.5 is a condition, which you know from the [when] that
starts the line. The following sentence’s what you want the rule designer to see, fol-
lowed by an equals sign that ties the end condition rule syntax to that sentence. The
structure looks like this:

[when]SENTENCE=CONDITION

SENTENCE: There is a Person with
CONDITION: $p : Person()

The second line in figure 5.5 is also a condition, but because it contains a minus sign
at the start of the sentence, the rule engine knows it’s adding a condition to the line
above. The structure can be broken down into this:

[when]- SENTENCE=CONDITION

SENTENCE: age is at lease {min}
CONDITION: age >= {min}

What’s going on with the {min} in your sentence? This is how you can put a place-
holder for the rule designer using this DSL to enter a value. This value gets assigned
to the variable min. The variable names are displayed for the rule designer to either
adjust or leave it as a default value. Knowing this, the rule’s clearer when the age of a
person’s evaluated for being greater than or equal to the value entered for min.

 The third line in figure 5.5 is also a condition, one which is added to the first line
due to the minus sign at the start of the sentence portion. The structure can be bro-
ken down into this:

[when]- SENTENCE=CONDITION

SENTENCE: age is no more than {max}
CONDITION: age <= {max}

This sentence contains another variable placeholder called max, which is used in the
rule to evaluate if the given persons’ age’s less than or equal to the value of max.

 The final line in figure 5.5 contains the action, which is indicated by a [then] ele-
ment at the start of the line. The structure of the action can be broken down as fol-
lows:

[then]SENTENCE=ACTION

SENTENCE: Set employee type to {Level}
ACTION: $p.setType({Level});

This sentence also contains a new variable placeholder called Level, which is used in
the action portion to set the person’s type value. You should have the feeling that it
doesn’t matter what you put in the SENTENCE portion of a DSL line and that you can
create the basis of a rule domain in your countries’ natural language, be that Dutch,
French, Spanish or whatever you need. This is the power of a DSL, to abstract away the
rule designing details and constrain your rule designers to only the rule elements you
wish to expose.

93Complex domains as natural language rules
 This completes the DSL and you now have a language that can be used together
with the guided rule designer to make it much easier for the HR domain experts to
create and maintain employee type logic. Let’s see how it’s done by designing a couple
of guided rules using your DSL.

5.1.3 Designing a rule using the DSL

The idea behind your DSL was to have a way to validate an employee based on their
age, to determine if they fall into one of two categories. This requires two rules, one
for each age range. The first one ensures that employees between 18 and 40 are classi-
fied as Standard employee types. The second ensures that employees between 41 and
65, which is retirement age, are classified as Senior types.

 Creating a guided rule with a DSL’s almost the same as creating a normal guided
rule as shown in chapter four, refer to section 4.2.4 if you need to revisit how. You start
with a new guided rule found in the New Item menu. In the popup, you need to fill in a
rule name and check the box at the bottom to use a DSL as shown in figure 5.6.

Figure 5.6 The popup to creating a new guided rule’s the same as used
before, but now you check the box at the bottom to include a DSL.

 The guided rule editor opens as before; be sure to add a Person object in the Data
Objects editor before returning to the Editor tab. Next, click on the WHEN section’s
green plus icon on the far right and view the DSL language sentences along with the
rest of the conditions. In figure 5.7

Figure 5.7 The popup to add a condition now contains the
three sentences from the DSL.

you see by clicking on the box at the bottom

94 CHAPTER 5 Creating complex business rules
labeled, “Only display DSL conditions” that you can only choose from the three DSL sen-
tences you previously created.

 By adding each one in succession to the WHEN section of the guided rule you
notice that the sentences can’t be edited except for the fields where you inserted vari-
ables. Be sure to set the minimum age to 18 and the max age to 40.

 Now you can click on the green plus icon for the THEN section to generate the
popup to create your actions. In figure 5.8 you see the DSL sentence to be added as an
action. By selecting the sentence, it’s added to the actions with a field where the vari-
able Level was inserted. Please modify this field to contain the string value “Standard”
as this is the type of employee that fits the age range.

Figure 5.8 The popup to add an action now contains the
sentence from the DSL.

 This almost completes the guided rule with DSL for the standard employee type, but
before you validate and save the rule you need to add the options of no-loop1 and ruleflow-
group2 set to validation. When you’ve completed the options, make sure it matches figure
5.9 before saving and moving on to create the second and final guided rule with DSL.

Figure 5.9 The completed Validate
Employee Standard guided rule using the
DSL.

1 If you need to refresh your knowledge of what no-loop attribute’s for, see chapter four section 4.2.1 where it
was first introduced.

2 If you need to refresh your knowledge of what ruleflow-group attribute’s for, see chapter four section 4.2.1
where it was first introduced.

95Complex domains as natural language rules
 The second guided rule with DSL looks a lot like this first one, but you need to
change the age ranges and action variables. The age range needs to be 41 to 65 and
the action sets the employee type to “Senior.” Let’s see if you can create this guided
rule with DSL without my help, but make sure it matches the one shown in figure 5.10
before you validate and save it.

Figure 5.10 The completed Validate
Employee Senior guided rule using the DSL.

 This completes the rules needed to cover validation of employee types based on
their ages. To prove this, you need to create a test scenario that covers a few cases to
ensure all the age ranges are satisfied. Having become an experienced rule main-
tainer, creating a test scenario should be almost second nature. I provide only a few
hints; name the test scenario Test Validate Employee Type, ensure you import a Person
data object from the Data Objects tab, create four-person facts to test ages 17, 18, 41
and 66. Activate the validation ruleflow-group. Also make sure you set a person type
initially to Unknown, as you expect each one of the ages to result in employee type
being set respectively to Unknown, Standard, Senior and Unknown. Finally, allow all rules
to fire, but expect each of your Validate Employee rules to fire only once.

 When finished you should get a green bar stating that the test scenario ran success-
fully. You can inspect the fired rules, as there are rules in your project that don’t apply
to this test. Click on the Show Rules Fired button to expand the list.

 Figure 5.11 shows you a completed and working test scenario to validate the rules
around employee type checking. Don’t forget to save your test scenario before closing.

 This completes the tour of DSL usage in guided rules. This isn’t an all-encompass-
ing look at what’s possible with DSL’s, but it should give you a solid foundation of how
they work and what you can achieve. Next’s a look at what you can do with guided
decision tables and spreadsheets as a form of rule processing in your project.

96 CHAPTER 5 Creating complex business rules
Figure 5.11 The completed test scenario which ensures all ages are validated for employee type.

5.2 Complex rules made easy with decision tables
Sometimes you’ve a more complex set of business rules that you want organized in a way
that allows you to oversee the rules in a single view. The problem with technical rules and
guided rules is that you end up with a lot of rules in different files with a use case like this.
The decision table’s a web based spreadsheet format where each row of the table repre-
sents a rule, providing you with a single view of multiple and often complex rules.

 It’s often the case that in the business logic discovery phase, you find that the busi-
ness owner uses a spreadsheet to keep track of pricing, products, ratings or some com-
bination of logic that determines how they go about their daily work. It’s also possible
to plug in spreadsheets, when in the correct form, into your project to allow the busi-
ness owner to continue working in the manner that she’s accustomed to. It goes
beyond this book to cover how to use existing spreadsheets in your projects, instead
you can explore an example online.1 I take you through an example in the HR exam-
ple allows you to create a guided decision table in JBoss BPM Suite to implement a set
of complex rules.

97Complex rules made easy with decision tables
5.2.1 Guided decision table wizard for complex rules

Imagine that for each employee, based on age and the need for a work visa, you need
to create a set of rules to determine which of the four categories an employee needing
a work visa fits into.

 Work visa categories
 Type A – employee work visa needed and age’s between 18 – 25
 Type B – employee work visa needed and age’s between 26 – 35
 Type C – employee work visa needed and age’s between 36 – 45
 Type D – employee work visa needed and age’s between 46 – 65

 Four rules are in the initial decision table. There might be even more categories in
the future or the age patterns might change. To provide for flexibility in a large or
possibly large range of data in a rule set you can put the rules into a decision table.
The basic rule that needs to be represented in each row looks like this:

WHEN
 Employee age is between MIN and MAX
 Employee requires a work visa
THEN
 Set Employee work visa type to TYPE

The values for MIN and MAX are different for each row in the decision table and rep-
resent the conditions to be met along with the requirement for a work visa. The values
for TYPE are different for each row and represent the action of setting the employee
field work visa type. Let’s get started by using a guided decision table wizard that you
find in the New Item menu under Guided Decision Table as shown in figure 5.12.

Figure 5.12 Select the Guided Decision Table’s created
from the New Item menu.

1 A complete project example that used an external spreadsheet to validate zip codes, known as the JBoss BPM
Baggage Delivery demo, can be found at (https://github.com/effectivebpmwithjbossbpm/bpms-baggage-
delivery-demo).

https://github.com/effectivebpmwithjbossbpm/bpms-baggage-delivery-demo
https://github.com/effectivebpmwithjbossbpm/bpms-baggage-delivery-demo

98 CHAPTER 5 Creating complex business rules
 A popup appears for you to name the decision table, select the default package as
its location, ensure that both the Use Wizard box and the extended entry box are checked
before clicking on OK as shown in figure 5.13.

Figure 5.13 Create a new guided decision table starts with this popup.

 You’re presented with the Guided Decision Table Wizard which includes a check list
that guides you through the process of creating your decision table. The first step’s
labeled Summary and it’s filled in with the values you selected from the previous
popup. Note the Next, Previous, Cancel and Finish buttons on the bottom right. Be care-
ful to use the next and previous buttons and don’t accidentally click on the finish but-
ton. You can’t get back to this guided wizard once you click on the finish button.

 In figure 5.14 you see the initial summary page of the guided wizard. Click on the
next button to move down the list to Imports and on the right side find the fields to
create imports, conditions, actions and more.

Figure 5.14 The guided decision table wizard for step by step building of complex rule sets.

99Complex rules made easy with decision tables
 Starting with the imports, shown in figure 5.15, you see that you can select any of
the available data objects for your project. You need the person object, and you can
select this, click on the right arrow to insert it, and then click on the next button to
add your facts.

Figure 5.15 Adding imports step in guided decision table wizard, where you select the data object to be
imported and use the arrows to move to the right column to make it available for your decision table rules.

 The step to add fact patterns consists of you selecting your person object, using the
arrow to move it to the right window, selecting the person object and binding it to the
variable as show in figure 5.16. Note that after you type in the variable name, hit enter
and it appears next to the person object in the chosen types window. Click on next to
start adding constraints.

Figure 5.16 Assigning a binding variable name to reference a fact.

 You see three windows with your person object on the far left under available pat-
terns. If you select this person object, all its available fields are shown in the middle
window entitled available fields. When defining the incoming fact constraints for each

100 CHAPTER 5 Creating complex business rules
row in the decision table, you’ve a minimum age, a maximum age, and check that the
work visa required field’s marked true. To do that, select age field and click on the
arrow to add it to the far-left window labeled conditions. Do this twice to create two age
fields to assign conditions and for work visa required field.

 Once added, you can select each field and underneath the windows the text fields
are shown to provide a column header description. Select the operator that constrains
that field from the drop-down menu. For the age fields, select each one, fill in the fol-
lowing two fields and ignore the rest.

 Min Age
 Column header: Minimum Age
 Operator: greater than or equal to

 Max Age
 Column header: Maximum Age
 Operator: less than or equal to

 For the work visa required field see figure 5.17, which shows the end results for all
three fields. Note that all fields added as conditions are red until you provide the nec-
essary details, at which time they turn black. Click on next to start adding actions.

Figure 5.17 Define constraints on the fact fields, these then appear in the final decision table
to create rules.

101Complex rules made easy with decision tables
 Defining actions to be taken’s the same process as you completed. Choose the per-
son object to display its fields in the second window, choose the field workVisaType if
your rule conditions are met, and use the arrow button to add it to the chosen fields
window. As shown in figure 5.18, it’s now red and you must select it to start filling in
the column header, but leave the rest of the fields blank.

Figure 5.18 Define actions by selecting the object, then the field you want
the action to take place on. The chosen field, workVisaType, remains a red
color until selected and the details are filled in.

 Click on next to move to the add actions step, which you don’t need, and click
next to move to the last step in the guided decision table wizard. You want the table to
be fully expanded to ensure that the provided box is checked, and click on the finish
button to see your decision table appear in the editor.

5.2.2 Finalize decision table with rows of rules

Now that your decision table’s in front of you, you can expand it to view the details.
It’s an empty decision table, as you’ve yet to define any rows which are your rules.
Notice the Condition columns and Action columns are filled with your pre-defined values,
ready for your rules to be added in the rows.

 The rules you want to add can be found at the beginning of section 5.2.1. Fill in
the rows and your decision table should look like the one shown in figure 5.19. You
can do this by clicking on each field in turn, then filling in the text, number or check-
ing the box.

 One thing’s left to do before you can start working on a test scenario to validate
the workings of your decision table; you must add the options no-loop and define a rule-
flow-group. To do this click on the green plus icon found under the decision table label
which produces the add a new column pop up. Select the column type add a new column
entry as shown in figure 5.20 and click on OK button.

102 CHAPTER 5 Creating complex business rules
Figure 5.19 The decision table with the four complex rules entered as rows, defining what age
span requires which visa type.

Figure 5.20 Add a new
column popup’s used to
add options to your
guided decision table.

103Complex rules made easy with decision tables
 You want to add the two attributes; add the no-loop option before coming back
around again to add the ruleflow-group option from the pull-down menu as shown in
figure 5.21.

Figure 5.21 Add
attributes to your decision
table from the drop-down
menu, such as ruleflow-
group.

 Back in the decision table editor you find the options added and displayed as col-
umn entries in your decision table. You can put in default values under the options
tab, but for clarity you should put them in each rule row as shown in figure 5.22.

Figure 5.22 There attribute values should be filled in for each row and for each rule in
the decision table.

 As the options aren’t contributing to the readability of your decision table, you can
make use of the option to check the boxes labeled Hide Column to remove the col-
umns from your view as shown in figure 5.23.

104 CHAPTER 5 Creating complex business rules
Figure 5.23 To enhance readability of the decision table, hide the
attribute columns.

 Be sure to validate and save your decision table. Only one task’s left; creating a test
scenario to exercise the correctness of this set of rules. This test scenario’s called Vali-
date Employee Work Visa Rules and can be found in the chapter project. It’s left to you to
create this based on the knowledge you’ve acquired building previous test scenarios.

 This chapter has taken you through creating a DSL, using a guided rule which uses
that DSL and implementing rules in a guided decision table. It hasn’t covered all the
possibilities with regards to rule creation in JBoss BPM Suite, as there remains more to
explore after reading this chapter. I hope you continue to use the basic skills taught to
further expand your ability to use rules in the many forms provided by JBoss BPM Suite.

5.3 Summary
 DSLs simplifies a problem domain, making rule creation like designing natural

language rules.
 Conditions and actions are the building blocks in a DSL like in simple guided

rules.
 Rules become easier to understand when building them using a DSL.
 Decision tables help when rules contain data or ranges of data that need to be

flexible or modified often.
 The overview of a large rule set’s easier when the rules are captured in a single

decision table.
 The need for rule validation remains no matter what type of rules are created;

even complex rules should be tested using scenarios.

 index

Symbols

*.drl postfix notation 64
+New item button, technical rule testing 70
+OK button 25

creating new data object 41

A

ACME Travel Data Model, example project
54–57

Action columns, decision table 101
actions 61, 85
Actual results, technical rule testing 77
Add a new tag button 47
Add button 56
Add button, Organizational Unit Manager 25
Add from repository button 56
Administration item, Authoring menu 22
administration perspective 22

project organization 23
setting up organizational structure 24–25
starting 22–23

agenda, described 64
Apache Software Foundation 10
application, changes to business logic and 7
Approve Reward, user task 6
Artifact Repository view ??–54
Artifact repository view 54
artifacts, default list 54
asset manager 15
Associated repositories window 25
Audit log, technical rule testing 75
Authoring menu 22, 28, 54

data modeling 39

automation
and potential to improve business 4
and process improvement 2
and removal of inconsistent behavior 4
and tradition human brain power 3
BMP suite and integrating services in

organization 9
business value and 3
fully-automated business process 5

Available repositories window 25

B

BAM (Business Activity Monitoring) 16
behavior, inconsistent, and process

automation 4
BMP suite

when not to use 10
BPM (Business Process Management) 1

basis of 2
introduction to BPM concepts 2–7

BPM analysis tooling 15–16
BPM project

basic building blocks for 7
supporting components 17

BPMN (Business Process Modeling Notation)
specification 4

business activities, aspects that support
integration of 1

Business Activity Monitoring. See BAM
business behaviors, process measurement and 4
Business Central 13, 22

data modeling 39
home screen 40
logging into 22
1

2 INDEX
business events 1, 8
business events engine 13
business knowledge, and rules that

encapsulate 59
business logic

externalization 61, 85
Human Resources (HR) department,

example 60
data object 65

Human Resources department, example ??–61
identifying rules in code 61
in organization 60
technical and guided rules 60, 64
traditional application development and 7
workflow 59

business logic, complex 88
Business Process Management. See BPM
Business Process Modeling Notation. See BPMN

(Business Process Modeling Notation)
business processes 1

basic series of events for process definition 4
bottleneck, example of 3
different uses of 9–10
example of developing process definition 4–5
human involvement 5
human resource department, example of 4
ideal 5
in daily business 2
overview 9
process diagram 4
selection and business improvement 4
STP (Straight Through Processing) 5
when not to use BMP suite 10

Business Processes package 34
business resource planner engine 13
business rule management systems 8

and powerful use of business events 9
business rules 1

and indicators of logic that can be extracted
as 8

and maintaining consistency across
applications 8

application of 8
centralizing in JBoss BPM Suite 60
defined 7
evaluation 8
externalization 8

business rules engine 13
business rules, complex 86

decision table See decision table
example project 87
implementing a set of complex rules,

example 97–101

business value
defining a process and 4
described 3

business, driving forward and 2

C

Cancel button, guided decision table wizard 98
case-statements 8
certified and supported configurations 12
Clone repository, Repositories menu 26
cloud, JBoss BPM and running in 20, 34
cofiguration decisions, various 20
communities 1
community projects 18

Apache Software Foundation 10
examples of 11
integration and maintenance 11
upstream 10

competitors, organizations constantly tested by 2
conclusion, defined 61
Condition columns, decision table 101
conditions 61, 85

building more complex 91
containerized installation 36

Docker platform and 20
steps to generate 20–21

Copy, data modeler button 43
Create and continue button, adding fields to data

object 44
Create button, adding fields to data object 44
Create new Project pop-up 29–30
credit card transactions business rules 8
customer evaluation process, example of STP

process 6
customers, shifting expectations of 2
Customize view button 30

D

data model
described 37
example

Department data object 50–53
external 53

importing 54
Java archive 53

imported external
using 55–57

data modeler 15
adding data fields 41

3INDEX
Overview tab 47
providing necessary details 40

data modeling
adding fields to data object 43–46
adding identified fields 42
Business Central console 39
creating new data object 40–41
data model editor 42

data object's initial state 42
data model example 38
data model source 49–50
formal definition 38
geting started 38
menu bar buttons 43
overview 38
Project Authoring perspective 41

data object
+add field button 43
Complete button and field submission 45
creating new 40–41
detailed information in Overview tab 47
editing by hand 50
example project 38
fields in 58
getter and setter methods 49
Metadata tab and extra information about 48
New Field pop-up 44
put in packages 41
taking away locked object 48

Data Object, New Item menu 40
data Objects tab, guided rule editor 80
data, as building blocks for process project 37
decision table

adding options to 101–102
and flexibility in a large range of data 97
defining fact constraints 100
echancing readability of 103
Extended entry box 98
finalization 101
guided decision table wizard 97–101
MIN and MAX values 97
overview 96
Use Wizard box 98
validation and saving 104

decision table editor, viewing added options 103
decision tables 14
default settings, JBoss BPM Suite installation 19
Delete, data modeler button 43
demo container, steps for generating

containerized installation 21
Department data object, example of data

modeling 50–53
Department data object, example project 38

dependencies
adding 56–57
details, filling in manually 56

Dependencies view 55
deployment management 15
deployment repository 17
developers

and DSL 89
technical rules for 65–68

development repository 14, 17
Docker platform 20
domain specific language See DSL
domains, complex, as natural language rules 87
Download button, Artifact repository 54
Download Project menu item 33
Download Repository menu item 33
DRL (Drools Rule Language) 64
DRL file See technical rules, for developers
DRL rule constructs 89
Drools projects 10
Drools Rule Language. See (DRL)
droolsjbpm-knowledge, community project 11
drools-website, community project 11
DSL (domain specific language)

and creating the basis of rule domain in
country's natural language 92

defined 87
designing a rule using 93

guided rule editor 93
no-loop and ruleflow group 94
validation and saving 94

example 89
completed DSL 90
creating new DSL definition 91
multiple WHEN lines 91
rules applied 90

variable names 92
when to use 89

DSL definition, New Item menu 90
DSL editor 91

similar to technical rule editor 91

E

Eclipse 14
Editor tab 80
Employee data object, example project 38, 41
employees, hiring of, automated processes and 3
Enable Tag filtering, view configuration 33
end node, process diagram 4
equals sign (=), condition rule syntax 91
events See business events

4 INDEX
execution details, business process completion
and 4

execution management 16
external data model 58
External link, Metadata tab 47

F

fact value 75
fields, available, guided decision table wizard 99
File Explorer, viewing repository details 27
Finish button

adding new projects 30
guided decision table wizard 98

G

gateways, process diagram 4
getName method, name field 49
guided decision table wizard 97

adding fact patterns 99
adding imports 99
creating decision table step by step 98
defining actions 101
initial summary page 98

guided decision tables 14
guided rule editor 78–83
guided rule modeler 14
guided rules 14, 85

adding conditions to 80
comma separated list 82
creating with DSL 93
described 78
DSL (domain specific language) and 86
guided rule editor

applying constraint 81
field constraint 81

guided rule editor See guided rule editor
origin field 81–82
overview 64
pop-up for creating new 80
testing

steps to create guided rule test 83–84
guided score cards 14

H

historical data, previous process instances and 3
human involvement

and example of STP process 5
and fully-automated processes 5

business processes and reducing human
errors 9

defining a process and 4
Human Resources (HR) department, business

logic example 60

I

if-then construction 61
if-then-statements 8
imported external data model 55–57
Imports, step in creating decision table 98
inference engine 63
Insert a new fact, section, technical rule

testing 71
install project, getting started with JBoss BPM

Suite 20
installation process, JBoss BPM Suite 19
installation setup, JBoss BPM Suite 19
integrated development environment (IDE)

tooling 49
Intelligent Integrated Business Runtime 12
interoperability, JBoss BPM Suite and 12
Item successfully validated, message 50

J

Java 44
business logic 61
data model implementations and 38
source code and Source editor 49

Java 7/Java 8, supported by JBoss BPM Suite
project 20

Java archive (JAR) file 53
JBoss BPM

cloud experience 35
data modeling 37

JBoss BPM. See also BPM (Business Process
Management)

JBoss BPM Suite
accessing container installation 21
artifact storage 56
as collection of components 12
BPM analysis tooling 15–16
Business Central 22
Business Central console

Artifact repository view 54
business complex rules

guided decision table 97–101
business logic 59
containerized installation 20, 36
data model editor 42

5INDEX
data modeler 38
described 11
DRL (Drools Rule Language) 64
example data model for implementation in 38
external data model 53
maven repository 56
Maven, project build tool 29
modeling tools 13–15
packages and 34
process testing 1
project organization 23
rules

inference engine 63–64
rule processing 64

running locally vs. running in a container 21
runtime engines 12–13
simulation of process instances 3
syntax for constructing rules 60

JBoss BPM Suite architecture 1
JBoss BPM Suite Easy Install project 20–22
JBoss BPM Suite product, configuration options

within 20
JBoss Business Rules Management System

(BRMS) product 60
JBoss Developer Studio 14
JBoss EAP (Enterprise Application Platform) 12
JBoss Enterprise Application Platform. See JBoss EAP
JBoss Travel Agency, example project 36
jBPM projects 10
jbpm, community project 11
jbpm-designer, community project 11
jbpmmigration, community project 11

K

Key Performance Indicators. See KPI
knowledge workers. See also business value
knowledge, business value and 3
KPI (Key Performance Indicators) 16

L

language, human readable 87
Latest Version, data modeler button 43
layers, JBoss BPM Suite 12
left-hand side See LHS
Level, variable placeholder 92
LHS (left-hand side) 63
List, Repositories menu 26–27
Literal value button, technical rule testing 73
lock icon 48
Lock status field, Metadata tab 48

M

Manage Organizational Units menu item 24
Managed Repository check-box 26
max, variable placeholder 92
Metadata tab 47–48
min variable 92
modeling tools 13–15
MVEL language 89

N

New Field entry form 44
New Field pop-up 43
New Item menu 79

adding new projects 29
rule implementation choices 87

New Project pop-up, adding new projects 29
New repository, Repositories menu 26
Next button, guided decision table wizard 98
no-loop attribute 68, 94

decision table 103
Note field, Metadata tab 47

O

Object Management Group. See OMG
OCP (OpenShift Container Platform) 35
OMG (Object Management Group) 4
Open button, Artifact repository 54
Open Project Editor button 33, 55
Open Source

projects, community of 1
software solutions 10

Open Source Integrated Development
Environment (IDE) 14

OpenShift Cloud
basic setup 35
example projects 35

OpenShift Container Platform. See OCP
OpenShift Online cloud 20
OpenShift xPaaS 35
organization

and searching ways to constantly grow 2
automation in modern 9
business value 3
data structure 38
implementing business logic and 59

organization structure, example of See project,
starting first

Organizational Unit Manager 24
organizational unit, adding 23–26

6 INDEX
Organizational Units menu 24
Overview tab 46–47
Overview tab, saving modifications 49

P

package 34
default level 67
described 36
references to 34

pattern matcher 63
patterns, available, guided decision table

wizard 99
Persistable check-box 41
pop-up, creating new data object 40
premise, defined 61
Previous button, guided decision table wizard 98
proces instance

simulation 3
process development

JBoss BPM Suite 1
process development projects, aspects that

support 1
process diagram

described 4
example of 5

process engine 13
process instance 16

rehydration 6
process manager 16
process modeler 14
process monitoring, business value and 3
process simulation, BPM analysis tooling 15
product documentation

available configuration options and 20
JBoss BPM Suite 19

production memory 63
project

adding new 28–33
business logic 59
data model implementation 38
external data model 53
multiple example cloud projects 36
starting first 22

adding organizational unit 23
adding repository 26
administration perspective 22
organization structure 23
Project editor 30

viewing default level of 41
Project Authoring perspective 28

adding dependencies to project 55

project authoring perspective
inability to see where to add data model 54

Project Explorer, adding new projects 28, 30
Project Explorer, expanded folder structure 41
Project Settings menu 55
Project view 31
projects 1

R

readme document, getting started with JBoss BPM
Suite Easy Install project 20

Red Hat
EAP and 12
JBoss Developer Studio 14

Red Hat Customer Portal 35
Red Hat Developers site 35
Red Hat OpenShift Container Platform 20
Refresh button 33
rehydration, process instance and 6
Rename, data modeler button 43
Reporting panel 75
Repositories menu 26
repository

adding
Managed Repository check-box 26
Repositories menu 26
Repository Editor 27

and project assets 23
cloning 26
described 36

Repository Editor 27
Repository view 31
research and development, communities and 1
resource waste, reduction 4
RHS (right-hand side) 63
right-hand side See RHS
rule design and DSLs 89
rule engine 85

DSL definitions 89
rule engine See also inference engine
rule syntax, developers and 89
ruleflow-group attribute 68, 94

decision table 103
rules

agenda 64
basic structure 62
conclusion 61
design 78
designing with DSL 93–95
example of credit card transactions 8
externalizing into JBoss BPM Suite 60
fired 63

7INDEX
grouping 68
guided rule editor 78
implementation of business logic 59
implemented as several technical rules 65
inference engine 63–64
pattern matcher 63
premise 61
production memory 63
the way they operate 63
validation 67
working memory 63

rules See also business rules, technical rules,
guided rules

Run scenario button, technical rule testing 75–76
runtime engines 12–13

S

Save button, data model editor 46
Save this item pop-up 46
Save, data modeler button 43
score cards 14
Select button, adding dependency 57
setName method, name field 49
Show as Folders, customize view menu 31–33
Show as Links menu item 31
Show Rules Fired button 95
simulation report 15
source code editor 58
Source editor 49

constant validation 50
described 49

Source field, Metadata tab 47
ssh button 27
start node, process diagram 4
state engine, wait states and 6
static applicaton code, business logic in 7
static diagram 5
STP (Straight Through Processing) 5, 17

example of 5
Straight Through Processing. See STP
Subject field, Metadata tab 47
suite

various components 10, 18
Summary, step in creating decision table 98

T

task manager 16
task node, process diagram 4
task, process diagram 4
technical previews 12

technical rule editor 65–68, 85
technical rules 14, 85

completed test, example 78
extending 77–78
for developers

creating a rule 67–68
development environment 65
DRL syntax exposed directly to user 65
example project 65–68
field restrictions 65
properties panel 65
technical rule editor 65
technical rule editor. See also technical rule

editor
inserting new fact 78
overview 64
testing

activation rule flow group 71
Add Import pop-up 70
adding a field 73
CALL METHODS 74
Data Object tab 69
EXPECT section 74
fact name 71–72
GIVEN section 71
positive test case 71
test scenario 68
test scenario guided editor 69

temporal element, business events and 8
terminology, basic rule structure and 63
test scenario 60, 85

and designing a rule using DSL 95
correctness validation 86
errors in 76
extending 77–78
finalizing 78

Test Scenario menu item 68
Test Validate Document, test scenario 83
testing

artifacts 1
guided rules, steps for 83–84
process reaction to severe loads 15
rule flow group to be tested 71

testing See also technical rules
THEN section 94

and DSL (domain specific language) 91
transition arrow, process diagram 4
Type field, Metadata tab 47

U

Upload button, Artifact repository 54
upstream community projects 18

8 INDEX
URI field, Metadata tab 47
Use real date and time, menu item 74
user form modeler 15
user task engine 13

V

Validate button 43, 49, 68
editing data object's Source 50

validation 71
correctness 86
rules 68

Version history tab 47, 58
view, customizing 31–33

W

wait states 4
described 6
rewards process 7

web tooling, generating data objects and 58
WHEN section, DSL (domain specific

language) 91
when-then construction 61, 80
Work Item Definitions 31
Work Item Handlers package 34
working memory 63
workshop, business process and its execution 4
workshops, online 19

	brief contents
	What’s in a process
	1.1 Introducing BPM
	1.2 An introduction to rules, events and processes
	1.2.1 What are business rules?
	1.2.2 What are business events?
	1.2.3 What are business processes?

	1.3 Understanding the role of community projects
	1.4 Meet the JBoss BPM Suite
	1.4.1 Introducing the core runtime engines
	1.4.2 Modeling tools for all your BPM needs
	1.4.3 Looking at the BPM analysis tooling
	1.4.4 Execution management made easy
	1.4.5 Providing the necessary reporting and monitoring tools
	1.4.6 The supporting components

	1.5 Summary

	Processing first steps
	2.1 Installing JBoss BPM
	2.1.1 Meet the JBoss BPM Suite Easy Install project

	2.2 Start a first project
	2.2.1 Starting with Administration perspective
	2.2.2 Adding an organizational unit
	2.2.3 Adding a repository
	2.2.4 Adding new projects
	2.2.5 Where are the packages?

	2.3 Touring JBoss BPM in the Cloud
	2.3.1 What exactly is JBoss BPM in the Cloud?
	2.3.2 Getting the Cloud experience
	2.3.3 Installing the JBoss BPM Travel Agency in the Cloud

	2.4 Summary

	Modeling process data
	3.1 Data modeling tooling overview
	3.1.1 Getting started with data modeling
	3.1.2 Taking a close look at the data model editor
	3.1.3 Adding fields to a data object
	3.1.4 More to the data modeler than meets the eye
	3.1.5 Using the data model source

	3.2 Complete your data model
	3.2.1 What to do with an external data model
	3.2.2 Your external data model brought to you by ACME
	3.2.3 Using the artifact repository effectively
	3.2.4 How to use an imported external data model

	3.3 Summary

	Starting with business rules
	4.1 Business logic central to your process
	4.1.1 From logic to rules
	4.1.2 Inside the rule engine’s brain

	4.2 Considering technical and guided rules
	4.2.1 Technical rules for developers
	4.2.2 Testing a technical rule
	4.2.3 Extending the technical rule and test scenario
	4.2.4 Guided rules for everyone
	4.2.5 Testing a guided rule
	a Add a document with fact name d.
	i Add the field origin to document d, set its literal value to US.
	b Add a person with fact name p.
	i Add the field document with the value =d.
	ii Add the field workVisaRequired, set its literal value to true.
	c In the Given section of the test add a second document with the fact name d2.
	i The origin field is set to GB.
	d Add a person with the fact name p2.
	i The document field’s set to the value =d2.
	ii The field workVisaRequired is set to value false.
	e Add a rule flow group activation set to value validation.
	a Expect Validate Document Origin and set this as fired this many times: 1.
	b Expect person named p to have the field workVisaRequired set to true.
	c Expect person named p2 to have the field workVisaRequired set to true.

	4.3 Summary

	Creating complex business rules
	5.1 Complex domains as natural language rules
	5.1.1 Domain specific languages to ease rule design
	5.1.2 Your first DSL
	5.1.3 Designing a rule using the DSL

	5.2 Complex rules made easy with decision tables
	5.2.1 Guided decision table wizard for complex rules
	5.2.2 Finalize decision table with rows of rules

	5.3 Summary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	index

