
C
O

N
T

E
N

T
S

ANY DEVELOPER, ANY APP, ANY PLATFORM

When .NET made its debut in 2002, it supported multiple
languages, including C# and Visual Basic (VB). Over the years,
many languages have been added. The initial release of .NET
Core supports C# and F#, with VB coming soon. Thanks to

.NET Core being open source, you can also install and use
the .NET Framework on your Linux machine. Even better:
An application created on any system can run on any other
system, regardless of operating system.

This refcard will guide you along the path to being
productive using .NET on Linux, from installation to
debugging. Information is available to help you find
documentation and discussions related to .NET Core. An
architectural overview is presented, as well as tips for using
the new Command Line Interface (CLI). Building MVC web
sites, RESTful services and standalone applications are
also covered. Finally, some tools and helpful settings are
discussed as they relate to your development efforts.

INSTALLING ON LINUX

CENTOS 7.1

sudo yum install libunwind libicu
curl -sSL -o dotnet.tar.gz https://go.microsoft.com/
fwlink/?LinkID=809131
sudo mkdir -p /opt/dotnet && sudo tar zxf dotnet.tar.gz
-C /opt/dotnet
sudo ln -s /opt/dotnet/dotnet /usr/local/bin

DEBIAN 8.2

sudo apt-get install curl libunwind8 gettext
curl -sSL -o dotnet.tar.gz https://go.microsoft.com/
fwlink/?LinkID=809130
sudo mkdir -p /opt/dotnet && sudo tar zxf dotnet.tar.gz
-C /opt/dotnet
sudo ln -s /opt/dotnet/dotnet /usr/local/bin

FEDORA 23

sudo dnf install libunwind libicu
curl -sSL -o dotnet.tar.gz https://go.microsoft.com/
fwlink/?LinkID=816869
sudo mkdir -p /opt/dotnet && sudo tar zxf dotnet.tar.gz
-C /opt/dotnet
sudo ln -s /opt/dotnet/dotnet /usr/local/bin

RED HAT ENTERPRISE LINUX 7.2

subscription-manager list --available
(get the Pool Id to be used in the next step)
subscription-manager attach --pool=<Pool Id>
subscription-manager repos --enable=rhel-7-server-dotnet-
rpms
yum install scl-utils
yum install rh-dotnetcore10
scl enable rh-dotnetcore10 bash

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
237

.N
E

T
O

N
 L

IN
U

X

UBUNTU 14.04 / LINUX MINT 17

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.
trafficmanager.net/repos/dotnet-release/ trusty main" > /
etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver apt-mo.trafficmanager.net
--recv-keys 417A0893
sudo apt-get update

UBUNTU 16.04
Use the instructions for Ubuntu 14.04, replacing the first
command with:

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.
trafficmanager.net/repos/dotnet-release/ xenial main" > /
etc/apt/sources.list.d/dotnetdev.list'

OTHER DISTROS
Visit the website dot.net.

OPEN SOURCE MEANS REPOSITORIES

At GitHub.com:

PROJECT DESCRIPTION REPOSITORY

CoreFX .NET Core foundational libraries. /dotnet/corefx/

Core
runtime

.NET Core runtime and base
library (mscorlib).

dotnet/coreclr/

WCF
Client WCF libraries that allow

.NET Core applications to com-
municate with WCF services.

/dotnet/wcf/

CLI Command-line tools. /dotnet/cli/

ASP.NET
MVC

ASP.NET MVC framework. /aspnet/mvc/

Entity
Framework

Entity Framework data access. /aspnet/EntityFramework/

.NET on Linux
BY DON SCHENCK

 Installing on Linux

 Open Source Repositories

 The Layers of .NET

 dotnet Commands

 Tag Helpers... and more!

BROUGHT TO YOU IN PARTNERSHIP WITH

© DZONE, INC. | DZONE.COM

http://www.refcardz.com
https://DZone.com/Refcardz
http://dot.net
http://GitHub.com
http://developers.redhat.com?DZone.com

Truly portable .NET application development? It’s pos-
sible. Get the productivity of .NET Core, and the reli-
ability of a hardened operating system with Red Hat
Enterprise Linux. Learn how with Red Hat Developers.

Get started at developers.redhat.com

http://developers.redhat.com?DZone.com

3 .NET ON LINUX

THE LAYERS OF .NET

.NET Core 1.0, and the associated pieces (ASP.NET, Entity
Framework, etc) are separated into layers. While this may seem
disjointed, in fact it’s a powerful move, one that allows the
developer to pick and choose the bits they want. It also means
faster development of updates, and will allow the developer to
decide which versions to employ.

THE LAYERS EXPLAINED
.NET CLR
This is the runtime, the very foundation of .NET. Included are the
just-in-time compiler and Virtual Machine, type system, garbage
collection, and more.

.NET COREFX
The “System” libraries are here, things such as reflection and
streams, etc. When you reference, for example, System.Console
in your program, you’re using the core .NET libraries in this layer.
It is at this layer where a simple console application will run.

.NET CLI
This is, simply, the command line interface (CLI).

ASP.NET CORE
The level that supports application development. Things such as
dynamic compilation and access to objects and strings, etc., are
included in this layer.

TOOLING
Finally, the “add-on” part, completely separate from .NET yet
used by many developers. Anything in Visual Studio or Visual
Studio Code that makes it easier for the developer—Intellisense,
a powerful autocomplete helper, for example—is contained in
this layer.

THE DOTNET COMMAND

After installing .NET Core, you’ll use the command-line tool
dotnet, to do everything from creating code to publishing the
application. Note that the default language is C#, with support for
F# included. Support for Visual Basic is promised.

USEFUL DOTNET COMMANDS
IF YOU WANT TO... USE THE COMMAND...

See what version you have dotnet --version

See more information about your CLI dotnet --info

IF YOU WANT TO... USE THE COMMAND...

Create a basic “Hello World” console app dotnet new

Create a simple MVC web app dotnet new --type web

Create an F# “Hello World” console app dotnet new --lang F#

Create a library dotnet new --type lib

Create unit tests dotnet new --type xunittest

Restore an app’s dependencies dotnet restore

Compile an app dotnet build

Run an app dotnet run

Run an app in another location
dotnet run --project <path-to-
project>

Publish an app for deployment dotnet publish

Get help dotnet --help

CREATING THE HELLO WORLD CONSOLE APP
The following three commands will create and run a console
Hello World application.

dotnet new — This creates the source code. The Program.cs
file contains the working code.

dotnet restore — This pulls the necessary libraries from
Nuget.org.

dotnet run — This builds and runs the application.

THE DOTNET RESTORE COMMAND

The dotnet new command creates code (using templates
that are being built into .NET Core), but the dotnet restore
command will gather the dependencies necessary for your code
to compile. If you are familiar with other languages, you know it
may be necessary to use their package manager to retrieve the
dependencies for your project. For example, you may use npm
when developing in Node.js in order to fetch your dependencies.

Likewise, the dotnet restore command is the equivalent in
.NET Core; it is a package manager. When executed, it will use
your configuration to locate and retrieve any dependent libraries
(and their dependencies, etc.) for your project. The configuration
that guides the dotnet restore command is made up of two
parts: The project.json file, which lists your dependencies,
and the NuGet configuration file, which directs from where to
fetch the dependencies.

The NuGet configuration file, NuGet.Config, is located at
~/.nuget/NuGet/NuGet.Config. This file contains a list of
endpoints used when fetching dependencies. The endpoints
can point to anywhere that can be reached from your machine,
including the internet and internal storage. The following lists
the contents of the default NuGet.Config file:

<configuration>
<packageSources>
<add key="nuget.org"
 value="https://api.nuget.org/v3/index.json"
 protocolVersion="3" />
</packageSources>
</configuration>

© DZONE, INC. | DZONE.COM

http://nuget.org
https://api.nuget.org/v3/index.json

You can add endpoints; they are searched in order. You do not
need to point to nuget.org. For example, you can use daily
builds of .NET (obviously not recommended for production) by
switching to myget.org. For example, https://dotnet.myget.
org/F/dotnetcore/api/v3/index.json.

You can override the default NuGet.Config file by storing a
project-specific copy in your project’s root directory. For example,
if your project is located at ~/src/mvc, you can create the file ~/
src/mvc/NuGet.Config and it will be used before the default file.

WHERE ARE THE DEPENDENCIES STORED?
By default, all dependencies are stored locally on your machine at
~/.nuget/packages/. You can override this by specify a path in
the environment variable DOTNET_PACKAGES before running the
dotnet restore command.

As the dependencies are downloaded, a file is created (or updated
if it already exists) in the root directory of your project. The file,
project.lock.json, contains a list of your dependencies. This
list snapshot in time is used to when you run the dotnet restore
command. You can delete this file, but you’ll need to run dotnet
restore again before your next compile. The project.lock.json
file is not needed to run your application, only to build it.

DEPENDENCY VERSIONS IN PROJECT.JSON
When listing your dependencies in the project.json file,
you must also specify the version of the library. For example,
“Microsoft.AspNetCore.Mvc.TagHelpers”: “1.0.0-*”. The
wildcard character in this example allows dotnet restore
to retrieve any version equal to or greater than the version
specified. This is usually a bad idea, since each time you run
dotnet restore you may be retrieving a different version of
a library, resulting in different versions of your builds. The
solution is to fix your versions in time by specifying a specific
version. For example:

"Microsoft.AspNetCore.Mvc.TagHelpers": "1.1.0"

In this particular example, we are locking our dependency to
version 1.1.0. You can search nuget.org to find versions of
libraries. Or, if you are using an editor with Intellisense such as
Visual Studio or Visual Studio Code, it will allow you to choose
from a list of valid versions.

WHAT DOES DOTNET BUILD DO?

When you run dotnet build, or if you run dotnet run and it
automatically creates a new binary, by default it will create a DLL
at the following location:

./bin/[configuration]/[framework]/[binary name]

Using the HelloWorld application in a directory labeled “helloworld”
as an example, running dotnet build would result in:

~/helloworld/bin/Debug/netcoreapp1.0/helloworld.dll

This default location is used when you run the dotnet run

command from the root of your project. You can override this
default by specifying the location of the DLL, both when you
build it and when you run it. Consider the following example:

dotnet build --output ~/myapps/helloworld
dotnet run --project ~/myapps/helloworld.dll

Being able to specify the location of the DLL to run is important,
because this DLL is what is known as a Portable App, meaning it
can run on any system that has .NET Core installed. Copying this
DLL to another system—whether Linux, MacOS, or Windows—
means it can be run on that system using the dotnet run
command with the --project option. This allows you to write
once, run anywhere, as long as .NET Core is installed on the
target system.

What if .NET Core is not installed on the target system? In that
case, you can build a standalone app, meaning you can compile
it for the target operating system, then distribute it. To run it, it
does not need .NET Core installed on the target system; the dotnet
publish command will copy all the necessary bits (libraries) into
the target build directory. You need only to copy the contents of
that directory to another system and it will execute.

Note that you can build for any OS from any OS. This powerful
feature means you can build standalone applications for
Windows from Linux, for MacOS from Windows, etc.

The details of creating a standalone application are covered later
in this Refcard.

HOW TO CREATE A BASIC ASP.NET MVC WEBSITE
The dotnet new command has options to allow you to build an
ASP.NET MVC website. This is similar to using Visual Studio to
create a new website and choosing the MVC option. To build and
run a simple MVC website, use the following:

dotnet net --type web
dotnet restore
dotnet run

You can now view the basic ASP.NET MVC website at http://
localhost:5000.

Note that if you’re running Linux in a VM, the localhost will be
accessible only inside the VM, and not from your Windows host
machine. You can make the website accessible from the Windows
host by altering the following line in the Program.cs file:

.UseStartup<Startup>().UseUrls("http://*:5000");

From your Windows host machine, open the browser and point it
to the IP address of your VM. For example,
http://10.1.2.2.:5000.

As you move around the MVC website, you can observe the
console window of your VM. Because the log data is written
to stdout, you can watch the web server, Kestrel, serve up
your website. This is helpful for debugging or to simply better
understand the inner workings of your website.

When finished, pressing Ctrl-C will shut down the web server.

4 .NET ON LINUX

© DZONE, INC. | DZONE.COM

ASP.NET RAZOR TAG HELPERS

One of the improvements in ASP.NET is the new “Tag Helper”
feature. This feature allows you to use more HTML-like code
constructs in your Razor code and less C#-type code.

HTML HELPER VS. TAG HELPER

@Html.LabelFor(m => Model.FirstName, new {htmlAttributes =
new { @class = “control-label” }, })

Is replaced with:

<label asp-for=”FirstName” class=”control-label”></label>

BINDING TO A CONTROLLER ACTION WITH A TAG HELPER

<form asp-controller=”Submissions” asp-action=”Details”></
form>

SOME COMMON TAG HELPERS
TAG HELPER DEFINITION

asp-for
Used to create the HTML for a property. For example, <input
asp-for=”AlbumTitle” /> will create an input area for the
model property AlbumTitle.

asp-action Defines which action will be used in the current controller.

asp-all-route-data Allows you to append query string information to a URL.

asp-controller Determines which Controller will be used

asp-fragment Allows you to specify a page fragment, e.g. “TOC”.

asp-host Allows you to specify a host, e.g. “google.com”.

asp-protocol Allows you to specify a protocol, e.g. “https”.

asp-route Determines which Route will be used

asp-route-

Allows you to specify additional parameters for the controller,
based on the name of the attribute. For example, asp-
route-id could be set by using asp-route-id=”@ViewBag.
ItemId”.

asp-src-include
Include files with the ability to use globbing, e.g. asp-src-
include=”/scripts/**/*.js”.

asp-src-exclude Used in conjunction with asp-src-include to exclude file(s).

ANOTHER TAG HELPER EXAMPLE

<td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit
 <a asp-action="Details" asp-route-id="@item.ID">Details
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
</td>

Which creates this HTML:

<td>
 Edit
 Details
 Delete
</td>

DEBUGGING FROM VISUAL STUDIO

By sharing a volume between your host Windows PC and a Linux
machine (physical or VM, either will work), you can debug .NET
applications from within Visual Studio.

1. Enable Visual C++ iOS Development in Visual Studio 2015
Update 2 or newer. This is done by selecting Visual Studio in
the Windows Programs and Features applet in the Control
panel and modifying the installation to include “Visual C++
iOS Development”.

2. On the Linux VM, install the cross-platform debugger from
Microsoft, CLRDBG. Use the following command, which reads
a bash script from GitHub and executes it on your VM, to
install the debugger into the directory ~/clrdbg:

a. curl -sSL > https://raw.githubusercontent.com/
Microsoft/MIEngine/getclrdbg-release/scripts/
GetClrDbg.sh > | bash /dev/stdin vs2015u2 ~/
clrdbg

3. Set up ssh
a. Download PuTTYgen.exe and plink.exe from the PuTTY

web site: > chiark.greenend.org.uk/~sgtatham/putty/
download.html

b. Run PuTTYgen.exe and generate a public/private key
pair. > Save the private key to C:\mytools\private_
key.ppk. > Copy and paste the public key into the file >
~/.ssh/authorized_keys on your Linux machine.

c. Test the connection by running c:\mytools\
plink.exe -i > c:\mytools\private_key.ppk >
<username>@<Linux_machine_IP_address> -batch -t
> echo "SSH Successful!"

4. Share a folder/directory between the Windows host and the
Linux > machine

a. Create a shared folder on the Windows host called
“shared”.

b. Create a directory on the Linux machine called “/
shared”.

c. If you are using Vagrant, add the following line
to your > Vagrantfile, substituting your Windows
username and password > where necessary: synced_
folder "\\shared", "/shared", > type: "smb",
smb_username: "username", smb_password: >
"password"

5. Create the launch options XML file and add it to your project
in > Visual Studio. Call it “OffRoadDebug.xml”:

a. <?xml version="1.0" encoding="utf-8" ?>
<PipeLaunchOptions xmlns="http://schemas.
microsoft.com/vstudio/MDDDebuggerOptions/2014"
PipePath="c:\mytools\plink.exe"
PipeArguments="-i c:\mytools\private_key.ppk
<username>@<Linux_machine_IP_address>
-batch -t ~/clrdbg/clrdbg --interpreter=mi"
TargetArchitecture="x64" MIMode="clrdbg"
ExePath="dotnet" WorkingDirectory="~/
sharewithvm/mvc" ExeArguments="bin/Debug/
netcoreapp1.0/mvc.dll"></PipeLaunchOptions>

6. In Visual Studio, open a command window (Menu -> View
-> Other > Windows -> Command Window) and run the
following command to > start debugging:

a. Debug.MIDebugLaunch /Executable:dotnet > /
OptionsFile:C:\<path-to-file>\OffRoadDebug.xml

5 .NET ON LINUX

© DZONE, INC. | DZONE.COM

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

THE PROJECT.JSON FILE

The project.json file determines everything from dependencies
to build options to which tools are used, and much more. Here’s a
list of some of the settings available:

NAME DATA
TYPE DEFINITION

“name” string The name of your application.

“version” string The Semver version of the project.

“description” string
The longer description of the project, used in assem-
bly properties.

“title” string
The friendly name. Special characters and spaces can
be used (they’re not allowed in the “name” property).
This is used in the assembly properties.

“testRunner” string
Which testing tool: NUnit, xUnit, etc. An entry here
also indicates that this is a test project (i.e. created
with dotnet new --type xunittest).

“dependencies”
JSON
object

A JSON object that lists the dependencies used by the
project. These are downloaded when dotnet restore
is run.

“tools”
JSON
object

Defines the tools available, including making the
dotnet ef command available.

“buildOptions”
JSON
object

Previously “compilationOptions”, this is where
compile-time options are set. For example, “emi-
tEntryPoint” can be set to true or false to create an
executable or DLL.

“configura-
tions”

JSON
object

Allows you to establishing different project config-
urations such as Release, Debug, Staging, etc. This
setting is available to your code.

DOTNET WATCH

dotnet watch is a tool that will watch a directory and reload
your application if a file is changed. This is useful for debugging
as it allows you to make minor changes without the need to stop
and restart the application.

INSTALLING DOTNET WATCH
Add “Microsoft.DotNet.Watcher.Tools” to your project.json file as
a tool, such as:

“tools”: {
 “Microsoft.DotNet.Watcher.Tools”: “1.0.0-*”
}

USING DOTNET WATCH
Add the “watch” command immediately after any “dotnet”
command:

DOTNET COMMAND... BECOMES...

dotnet run dotnet watch run

dotnet run --framework
netcoreapp10

dotnet watch run --framework
netcoreapp10

ENVIRONMENT VARIABLES FOR DOTNET WATCH
There are two environment variable available to tweak how
dotnet watch works:

VARIABLE DEFINITION

DOTNET_USE_POLLING_FILE_
WATCHER

Default value is “0” or “false”. If set to “1” or
“true”, dotnet watch will poll files instead of

relying on the system’s built-in file watcher. Use
this when watching files that are shared, such as
a shared network drive or mounted volumes.

DOTNET_WATCH_LOG_LEVEL

Default value is Information. This sets the
logging level for dotnet watch. Value values
include Critical, Debug, Error, Information, Trace,
Warning, and None.

CREATING THE STANDALONE APPLICATION

By default, a new .NET application is a portable application. In
fact, it’s not even an .EXE file; it’s a DLL. You can take that DLL
and run it on any system that has .NET Core installed—Linux,
MacOS or Windows. The same DLL runs everywhere.

But what if you want to create an application that needs to run on
a system that does not have .NET Core installed? It’s much more
polite than, say, telling the user they need to install the .NET
Core framework first.

Fortunately, it can be done. You can create a standalone
application that can be sent to or downloaded from anywhere
and then executed.

To start, create a portable app by running dotnet new in a
directory called “HelloWorldStandalone”.

Next, open the project.json file. Under the property
“dependencies”, you find a JSON object that has two properties,
“type” and “version”. Remove the “type” key/value pair (i.e. delete
that line).

This signals the compiler to not expect the .NET Core platform to
exist on the target machine. In other words, during the build, all
the necessary .NET bits will need to be included in the output.

Next, add a new property to the project.json file:

"runtimes":{
 "rhel.7.2-x64":{}
},

The “rhel.7.2-x64” is what is known as a Runtime Identifier
(RID). This value instructs the compiler to build for a specific
operating system—in this case, Red Hat Enterprise Linux, version
7.2, running on 64-bit Intel hardware. A list of values can be found
at docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog.

BUILDING FOR DEBUG
With these small changes in place, the standalone application is
built for debugging using the following commands:

dotnet restore
dotnet build rhel.7.2-x64

This results in a “debug” version of the application at ./bin/
Debug/netcoreapp1.0/HelloWorldStandalone. To execute this
build, move to the subdirectory related to the Runtime
Identifier—in this case ./bin/Debug/netcoreapp1.0/

6 .NET ON LINUX

© DZONE, INC. | DZONE.COM

https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog

HelloWorldStandalone/rhel.7.2-x64—and use the following
command: dotnet HelloWorldStandalone.dll

PUBLISHING FOR RELEASE
When you are ready to build a “Release” version of your
application, you will use the dotnet publish command. Note
that you can use any handle when publishing your code, but

“Release” is the de-facto standard; it is the -r flag that determines
that this is a release version (versus a debug version). The
following command will compile your code into a directory along
with all the necessary libraries—in this example, to ./bin/
Release/netcoreapp1.0/rhel.7.2-x64/publish:

dotnet restore
dotnet build rhel.7.2-x64

Checking the contents of this directory reveals a standalone
application. Simply distribute all the contents of this directory
and it can be run on any system without needing to install .NET.

CONCLUSION

From a simple console application to a complex architecture
of RESTful microservices and web sites running in Linux
containers, .NET Core is not only ready today, but it is the future
of .NET. Because you can work in any OS—MacOS, Windows or
Linux—you can easily switch between environments and remain
productive. Further, you can now use your .NET development
skills to work with and on open source software. This is the
future, and the future is now.

FURTHER RESOURCES

• The Microsoft web site for .NET Core: dot.net

• The Red Hat web site for .NET on Linux: redhatloves.net

• “Transitioning to .NET Core on Red Hat Enterprise Linux”
ebook: > developers.redhat.com/promotions/dot-net-core

• .NET Weekly Standup Meeting: > live.asp.net

DZONE, INC.

150 PRESTON EXECUTIVE DR.

CARY, NC 27513

888.678.0399

919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to more than 3.3 million software

developers, architects and decision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

DON SCHENCK A developer since the beginning of time, Don is currently a Director of Developer
Experience at Red Hat, with a focus on Microsoft .NET on Linux. His mission is to bring .NET developers
into the Linux and open source communities. He also the author of “Getting Started with .NET on
Linux” by O’Reilly Media. Prior to Red Hat, Don was a Developer Advocate at Rackspace. His passion is
cooking and he hates the designated hitter rule.

ABOUT THE AUTHOR

BROUGHT TO YOU IN PARTNERSHIP WITH

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

7 .NET ON LINUX

http://dot.net
http://redhatloves.net
http://developers.redhat.com/promotions/dot-net-core/
https://live.asp.net/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
https://dzone.com/user/register?step=1

