
FUSE Mediation Router

Getting Started

Version 1.5
November 2008

Getting Started
Version 1.5

Publication date 10 Mar 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Draft

Table of Contents
Introducing Mediation Router .. 7

What is Mediation Router? ... 8
Architecture ... 10
How to Develop a Router Application .. 13

FUSE Mediation Router Tutorial ... 15
Prerequisites ... 16
Tutorial Overview ... 17
Stage 1: Create a New Project .. 19
Stage 2: Examining the Sample Code ... 21
Stage 3: Build and Run the Sample Project .. 23

3

Draft

4

Draft

List of Figures
1. Architecture of the Mediation Router ... 10
2. Overview of the Tutorial ... 17

5

Draft

6

Draft

Introducing Mediation Router
This chapter introduces the Mediation Router architecture and other basic concepts.

What is Mediation Router? ... 8
Architecture ... 10
How to Develop a Router Application .. 13

7

Draft

What is Mediation Router?
Overview

Mediation Router is an integration framework and runtime environment. It
enables you to quickly define and implement routes declarative solutions for
specific integration problems. A route defines an integration path between
two or more endpoints: a path from an input source to one or more output
destinations. Each endpoint in a route whether an input source or output
destination is identified by a URL. Mediation Router supports wide variety of
endpoint types (and URLs).

Mediation Router works seamlessly with the following FUSE products:

• FUSE ESB (Apache ServiceMix)

• FUSE Message Broker (Apache ActiveMQ)

• FUSE Services Framework (Apache CXF)

You also can use Mediation Router on a standalone basis or in any Spring
Framework-hosted application.

Enterprise integration patterns
Using routes, you can easily implement enterprise integration patterns (EIPs)
using plain old Java objects (POJOs). Enterprise integration patterns are
defined in a book of the same name by Gregor Hohpe and Bobby Woolf. The
book describes a number of design patterns for the use of enterprise application
integration and message-oriented middleware. For more details see Enterprise
Integration Patterns1 and the Apache Camel Enterprise Integration Patterns
Guide2.

Domain specific language
You can use a Java domain specific language (DSL) to configure routing and
mediation rules. A DSL, also referred to as a fluent API, is a programming
language designed for a specific kind of task.

The DSL means that Mediation Router can support type-safe smart completion
of routing rules in your IDE using regular Java code without you having to use

1 http://www.enterpriseintegrationpatterns.com
2 http://activemq.apache.org/camel/enterprise-integration-patterns.html

8

DraftIntroducing Mediation Router

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://www.enterpriseintegrationpatterns.com
http://activemq.apache.org/camel/enterprise-integration-patterns.html

extensive XML configuration. If you change your DSL rules, you must recompile
your Java sources.

Spring Framework XML
Configuration You also can define routing rules with a Spring Framework XML configuration

file (which requires no recompilation).

9

What is Mediation Router?Draft

Architecture
Overview

Figure 1 on page 10 gives a general overview of the Mediation Router
architecture; this architecture enables you to deploy across a wide variety of
container types.

Figure 1. Architecture of the Mediation Router

Router
The router service is represented by a Camel context object, which
encapsulates routing rules (in the form of RouteBuilder objects) and

components (which enable the router to bind to various network protocols
and other resources). The router application itself consists either of Java code
or XML configuration, or possibly a combination of the two.

Endpoints
In general, an endpoint is a specific source or a sink of messages, identified
by a URI. In practice, this means that an endpoint maps either to a network
location or to some other resource that can produce or absorb a stream of
messages. Within a routing rule, endpoints are used in two distinct ways: the
source endpoint appears at the start of a rule (for example, in a from()

command) and acts as a source of request messages and a sink for reply
messages (if any); the target endpoint appears at the end of a rule (for

10

DraftIntroducing Mediation Router

example, in a to() command) and acts as a sink for request messages and

a source of reply messages.

Components
A component is a plug-in that integrates the router core with a particular
network protocol or external resource. From the perspective of a router
developer, a component appears to be a factory for creating a specific type
of endpoint. For example, there is a file component that can be used to create
endpoints that read/write messages to and from particular directories or files.
There is a CXF component that enables you to create endpoints that
communicate with Web services (and related protocols).

Typically, before you can use a particular component, you need to configure
it and add it to the Camel context. Some components, however, are embedded
in the router core and do not need to be configured. The embedded
components are as follows:

• Bean.

• Direct.

• File.

• JMX.

• Log.

• Mock.

• SEDA.

• Timer.

• VM.

11

ArchitectureDraft

For more details about the available components see the Deployment Guide
and the list of Camel components3.

RouteBuilders
The RouteBuilder classes encapsulate the routing rules. A router developer

defines custom classes that inherit from RouteBuilder and adds instances

of these classes to the CamelContext.

Deployment options
The router architecture supports these deployment options:

• Spring container deployment You deploy the router application into a Spring
container. For this type of deployment, you can use the Spring configuration
file to configure components and define routes.

• Standalone deployment You write a main() method in the application

code, which is responsible for creating and registering RouteBuilder

objects as well as configuring and registering components.

For more details about the deployment options, see the Deployment Guide.

Camel context
A CamelContext represents a single Camel routing rulebase. It defines the

context used to configure routes and details which policies should be used
during message exchanges between endpoints.

3 http://activemq.apache.org/camel/components.html

12

DraftIntroducing Mediation Router

http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

How to Develop a Router Application
Outline of the development steps

To develop a router application, you perform the following high-level steps:

1. Choose a deployment optionthe router architecture is designed to support
multiple deployment options. Currently, the following deployment options
are supported:

• Spring container deployment.

• Standalone deployment.

2. Define routing rules in Java DSL or in XMLdepending on the deployment
option, you define the routing rules either in Java DSL or in XML.

3. Configure componentsif you need to use components not already embedded
in the router core, you must configure the components using either Java
code or (in the case of a Spring container) XML.

4. Deploy the routerto deploy the router, follow the instructions for the
particular container or deployment option that you have chosen. See the
Deployment Guide for details.

13

How to Develop a Router ApplicationDraft

14

Draft

FUSE Mediation Router Tutorial
This tutorial describes how to use Apache Maven to create, build, and run a basic router.

Prerequisites ... 16
Tutorial Overview ... 17
Stage 1: Create a New Project .. 19
Stage 2: Examining the Sample Code ... 21
Stage 3: Build and Run the Sample Project .. 23

15

Draft

Prerequisites
Overview

To follow the steps in this tutorial, you must have the following:

• An active Internet connection (required by Maven).

• Java Runtime on page 16 .

• Apache Maven 2 on page 16 .

Java Runtime
Install a suitable Java runtime (JDK 1.5.x). For more information, see the
Install Guide. After installing, set your JAVA_HOME environment variable to

point to the root directory of your Java runtime; also set your PATH environment

variable to include the Java bin directory.

Apache Maven 2
Download and install Apache Maven1 (2.x), a general purpose tool for building
and packaging applications. To download, visit:
http://maven.apache.org/download.html.

After installing Maven:

• Set your M2_HOME environment variable to point to the Maven root directory.

• Set your MAVEN_OPTS environment variable to -Xmx512M. (This setting

increases memory available for Maven builds.)

• Set your PATH environment variable to include the Maven bin directory

(%M2_HOME%\bin on Windows or $M2_HOME/bin on UNIX).

1 http://maven.apache.org/

16

DraftFUSE Mediation Router Tutorial

http://maven.apache.org/
http://maven.apache.org/download.html
http://maven.apache.org/

Tutorial Overview
Overview

Figure 2 on page 17 gives an overview of the architecture of the router that
features in this tutorial.

Figure 2. Overview of the Tutorial

The simple router shown in Figure 2 on page 17 consists of the following
parts:

• Router—the core component of the simple router. It consists of an instance
of type org.apache.camel.builder.RouteBuilder, which is responsible

for routing messages between component endpoints.

The main() function of the simple router application calls a Spring wrapper

class to start up a Spring container.

• Spring container—a standard container (see Spring2) that implements
sophisticated configuration mechanisms (for example, supporting concepts
such as dependency injection and reversion of control).

• Spring configuration file—by default, the Spring wrapper looks for the
Spring configuration file, META-INF/spring/camel-context.xml, on the

current classpath.

2 http://www.springframework.org/

17

Tutorial OverviewDraft

http://www.springframework.org/
http://www.springframework.org/

In this example, the Spring container is configured with the name of a Java
package, tutorial. The Spring wrapper initializes any router artifacts (for

example, instances of RouteBuilder) that it finds in the specified Java

package.

• File endpoints—the RouteBuilder instance is responsible for routing

messages between different endpoints. In this example, all of the endpoints
are file endpoints. A file endpoint is used to read or write messages to the
file system.

Tutorial stages
The tutorial consists of the following stages:

1. Stage 1: Create a New Project on page 19.

2. Stage 2: Examining the Sample Code on page 21.

3. Stage 3: Build and Run the Sample Project on page 23.

18

DraftFUSE Mediation Router Tutorial

Stage 1: Create a New Project
Overview

In this stage, you create a Maven project (simple-router) that contains a

sample application.

Steps
To create the project:

1. Create a new directory, ProjectRoot.

2. In a command window, change to the ProjectRoot directory.

3. Enter the following command to create the simple-router project:

mvn archetype:create
-DremoteRepositories=http://repo.open.iona.com/maven2
-DarchetypeGroupId=org.apache.camel.archetypes
-DarchetypeArtifactId=camel-archetype-java
-DarchetypeVersion=1.5.4.0-fuse
-DgroupId=tutorial
-DartifactId=simple-router

Note
Maven accesses the Internet to download JARs and store them
in its local repository.

As a result of this command, Maven creates the following directories and
files:

ProjectRoot/simple-router
ProjectRoot/simple-router/pom.xml ❶
ProjectRoot/simple-router/ReadMe.txt
ProjectRoot/simple-router/src
ProjectRoot/simple-router/src/data
ProjectRoot/simple-router/src/data/message1.xml ❷
ProjectRoot/simple-router/src/data/message2.xml ❸
ProjectRoot/simple-router/src/main
ProjectRoot/simple-router/src/main/java
ProjectRoot/simple-router/src/main/java/tutorial
ProjectRoot/simple-router/src/main/java/tutorial/MyRouteBuilder.java ❹
ProjectRoot/simple-router/src/main/resources
ProjectRoot/simple-router/src/main/resources/log4j.properties
ProjectRoot/simple-router/src/main/resources/META-INF
ProjectRoot/simple-router/src/main/resources/META-INF/spring

19

Stage 1: Create a New ProjectDraft

ProjectRoot/simple-router/src/main/resources/META-INF/spring/camel-context.xml ❺

Some of the project artifacts are described below:

❶ pom.xml is a Maven project file.

❷ message1.xml is an input message in XML format.

❸ message2.xml is an input message in XML format.

❹ MyRouteBuilder.java is a Java source file that implements the

sample route.
❺ camel-context.xml is a Spring configuration file.

20

DraftFUSE Mediation Router Tutorial

Stage 2: Examining the Sample Code
Overview

In this stage, you examine the sample code in
ProjectRoot/simple-router/src/main/java/tutorial/MyRouteBuilder.java.

This sample implements a typical EIP pattern, a content-based router, and
illustrates how easily and concisely you can solve integration problems using
Mediation Router.

Sample Code
The following code shows how the sample route is implemented:

...
package tutorial; ❶

import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.spring.Main;

import static org.apache.camel.builder.xml.XPathBuilder.xpath;

/**
* A Camel Router
*
* @version $
*/
public class MyRouteBuilder extends RouteBuilder {

/**
* A main() so we can easily run these routing rules in our IDE
*/
public static void main(String... args) {

Main.main(args);
}

/**
* Lets configure the Camel routing rules using Java code...
*/
public void configure() {

// TODO create Camel routes here.

// here is a sample which processes the input files
// (leaving them in place - see the 'noop' flag)
// then performs content based routing on the message
// using XPath

21

Stage 2: Examining the Sample CodeDraft

from("file:src/data?noop=true"). ❷
choice().
when(xpath("/person/city = 'London'")).to("file:target/messages/uk"). ❸

otherwise().to("file:target/messages/others");

}
}

This sample has several notable features. First, observe how the Java DSL
uses a series of method calls to create an English-like expression. This
technique makes the intent of the code clear: the sample reads input messages
from a directory, applies an XPath expression to each message's XML content,
and, based on the result, chooses a different route for the output messages.

Note also the following:

❶ Maven automatically creates a package name based on the value of the
-DgroupId argument to the mvn archetype:create command.

❷ The from() method call takes a file URL as its argument. This URL

provides information that Mediation Router uses to interpret and execute
the route. The file: prefix in the URL indicates that a file endpoint is

required, which means the file component is responsible for creating
the endpoint. (The file component, like other Mediation Router
components, serves as an endpoint factory.) The option in the URL,
?noop=true, indicates that the files in src/data should be left in place

and not consumed. (This option is one of many available; like other
components, the file component provides numerous options.)

❸ The when()method call specifies an XPath expression, which is applied

to each input. If the expression evaluates to true, output is routed to the
uk subdirectory; if false, to the others subdirectory.

22

DraftFUSE Mediation Router Tutorial

Stage 3: Build and Run the Sample Project
Overview

In this stage, you use Maven to build and run the sample project.

Steps
To build and run the sample project:

1. In a command window, change to the ProjectRoot/simple-router

directory.

2. Enter the following command to build the project:

mvn install

Maven builds the project and creates a target directory for the build

artifacts:

ProjectRoot/simple-router/target
ProjectRoot/simple-router/target/simple-router-1.0-SNAPSHOT.jar ❶
ProjectRoot/simple-router/target/classes
ProjectRoot/simple-router/target/classes/log4j.properties ❷
ProjectRoot/simple-router/target/classes/META-INF
ProjectRoot/simple-router/target/classes/META-INF/spring
ProjectRoot/simple-router/target/classes/META-INF/spring/camel-context.xml
ProjectRoot/simple-router/target/classes/tutorial
ProjectRoot/simple-router/target/classes/tutorial/MyRouteBuilder.class ❸
ProjectRoot/simple-router/target/maven-archiver
ProjectRoot/simple-router/target/maven-archiver/pom.properties

Some of the project artifacts are described below:

❶ simple-router-1.0-SNAPSHOT.jar is the deployment JAR.

❷ log4j.properties is a properties file used to control logging levels.

❸ MyRouteBuilder.class is the class file compiled from

MyRouteBuilder.java.

3. Enter the following command to run the project:

mvn camel:run

When FUSE Mediation Router starts, it prints lines like the following to
the console:

23

Stage 3: Build and Run the Sample ProjectDraft

23-Feb-2009 16:51:04 org.apache.camel.spring.Main doStart
INFO: Apache Camel 1.5.4.0-fuse starting
23-Feb-2009 16:51:04 org.springframework.context.support.Ab
stractApplicationContext prepareRefresh
...

The sample application runs until you stop it. It routes messages from
ProjectRoot/simple-router/src/data to either

ProjectRoot/simple-router/target/messages/uk or

ProjectRoot/simple-router/target/messages/others.

24

DraftFUSE Mediation Router Tutorial

	Getting Started
	Table of Contents
	Introducing Mediation Router
	What is Mediation Router?
	Architecture
	How to Develop a Router Application

	FUSE Mediation Router Tutorial
	Prerequisites
	Tutorial Overview
	Stage 1: Create a New Project
	Stage 2: Examining the Sample Code
	Stage 3: Build and Run the Sample Project

