Service Activator

Overview

Draft Service Activator

The service activator pattern describes the scenario where a service's
operations are invoked in response to an incoming request message. The
service activator is responsible for identifying which operation to call and for
extracting the data to use as the operation's parameters. Finally, the service
activator invokes an operation using the data extracted from the message.
The operation invocation can either be oneway (request only) or two-way
(request/reply).

Figure 34. Service Activator Pattern

Reqguest

B
N L

Service

Ranl Service
P Activator

Reguestor

Bean integration

Replier

In many respects, a service activator resembles a conventional remote
procedure call (RPC), where operation invocations are encoded as messages.
The main difference is that a service activator needs to be more flexible.
Whereas an RPC framework standardises the request and reply message
encodings (for example, Web service operations are encoded as SOAP
messages), a service activator typically needs to improvise the mapping
between the messaging system and the service's operations.

The main mechanism that FUSE Mediation Router provides to support the
service activator pattern is bean integration. Bean integration
[http://activemq.apache.org/camel/bean-integration.html] provides a general
framework for mapping incoming messages to method invocations on Java
objects. For example, the Java fluent DSL provides the processors, bean ()

and beanRef (), that you can insert into a route in order to invoke methods
on a registered Java bean. The detailed mapping of message data to Java

115


http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

Messaging Endpoints

116

Draft

method parameters is determined by the bean binding, which can be
implemented by adding annotations to the bean class.

For example, consider the following route which calls the Java method,
BankBean.getUserAccBalance (), in order to service requests incoming on

a JMS/ActiveMQ queue:

from("activemg:BalanceQueries™)
.setProperty ("userid", xpath ("/Account/Bal
anceQuery/UserID") .stringResult ())
.beanRef ("bankBean", "getUserAccBalance")
.to("velocity:file:src/scripts/acc_balance.vm")
.to("activemg:BalanceResults");

The messages pulled from the ActiveMQ endpoint,
activemg:BalanceQueries, have a simple XML format that provides the

user ID of a bank account—for example:

<?xml version='1l.0' encoding='UTF-8'?>
<Account>
<BalanceQuery>
<UserID>James.Strachan</UserID>
</BalanceQuery>
</Account>

The first processor in the route, setProperty (), extracts the user ID from
the In message and stores it in the userid exchange property, (this is
preferable to storing it in a header, because the /n headers cease to be
available after invoking the bean).

The service activation step is performed by the beanRref () processor, which
binds the incoming message to the getUseraccBalance () method on the
Java object identified by the bankBean bean ID. The following code shows
a sample implementation of the BankBean class:

// Java
package tutorial;

import org.apache.camel.language.XPath;

public class BankBean {
public int getUserAccBalance (@XPath("/Account/Bal
anceQuery/UserID") String user) {
if (user.equals ("James.Strachan")) {
return 1200;



Draft Service Activator

else {
return 0;

}

Where the binding of message data to method parameter is enabled by the
@xPath annotation, which injects the content of the user1p XML element

into the user method parameter. On completion of the call, the return value

is inserted into the body of the Out message (which is then copied into the
In message for the next step in the route). In order for the bean to be
accessible to the beanref () processor, you must instantiate an instance in

Spring XML. For example, you can add the following lines to
META-INF/spring/camel-context.xml configuration file to instantiate the

bean:
<?xml version="1.0" encoding="UTF-8"?>

<beans ... >

<bean id="bankBean" class="tutorial.BankBean"/>
</beans>

Where the bean ID, bankBean, identifes this bean instance in the registry.

The output of the bean invocation is fed into a Velocity template, in order to
produce a properly formatted result message. The Velocity endpoint,
velocity:file:src/scripts/acc_balance.vm, Specifies the location of

a velocity script, which has the following contents:

<?xml version='1l.0' encoding='UTF-8'?>
<Account>
<BalanceResult>
<UserID>${exchange.getProperty ("userid") }</UserID>
<Balance>${body}</Balance>
</BalanceResult>
</Account>

The exchange instance is available as the Velocity variable, exchange, which
enables you to retrieve the userid exchange property, using
${exchange.getProperty ("userid") }. The body of the current In message,
$ {body}, contains the result of the getUserAccBalance () method
invocation.

117






