Draft Idempotent Consumer

Idempotent Consumer

Overview

Idempotent consumer with
in-memory cache

The idempotent consumer pattern is used to filter out duplicate messages.
For example, consider a scenario where the connection between a messaging
system and a consumer endpoint is abruptly lost due to some fault in the
system. If the messaging system was in the middle of transmitting a message,
it might be unclear whether or not the consumer received the last message.
To improve delivery reliability, the messaging system might decide to redeliver
such messages as soon as the connection is re-established. Unfortunately,
this entails the risk that the consumer might receive duplicate messages and,
in some cases, the effect of duplicating a message may have undesirable
consequences (such as debiting a sum of money twice from your account).
In this scenario, an idempotent consumer could be used to weed out undesired
duplicates from the message stream.

In Mediation Router, the idempotent consumer pattern is implemented by
the idempotentConsumer () processor, which takes two arguments:

* messageIdExpression—an expression that returns a message ID string
for the current message; and

* messageIdRepository—a reference to a message ID repository, which
stores the IDs of the messages received so far.

As each message comes in, the idempotent consumer processor looks up the
current message ID in the repository to see if this message has been seen
before. If yes, the message is discarded; if no, the message is allowed to pass
and its ID is added to the repository.

For example, the following example uses the TransactionID header to filter
out duplicates:

import static org.apache.camel.processor.idempotent.MemoryMes
sageIdRepository.memoryMessageIdRepository;

RouteBuilder builder = new RouteBuilder () {
public void configure () {
from("seda:a")
.idempotentConsumer (
header ("TransactionID"),
memoryMessageIdRepository (200)
) .to("seda:b");

107



Messaging Endpoints

Idempotent consumer with JPA
repository

108

Draft

}i

Where the call to memoryMessageIdRepository (200) creates an in-memory
cache that can hold up to 200 message IDs.

You can also define an idempotent consumer using XML configuration. For
example, you can define the preceding route in XML, as follows:

<camelContext id="buildIdempotentConsumer" xmlns="http://act
ivemqg.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<idempotentConsumer messageldRepositoryRef="MsgIDRepos">
<simple>header.TransactionID</simple>
<to uri="seda:b"/>
</idempotentConsumer>
</route>
</camelContext>

<bean id="MsgIDRepos" class="org.apache.camel.processor.idem
potent.MemoryMessageIdRepository">

<!-- Specify the in-memory cache size. -->
<constructor-arg type="int" value="200"/>
</bean>

The in-memory cache suffers from the disadvantage that it can easily run out
of memory and it does not work in a clustered environment. To avoid these
shortcomings, you could use a Java Persistent APl (JPA) based repository
instead. The JPA message |ID repository uses an object-oriented database to
store the message |IDs. For example, you can define a route that uses a JPA
repository for the idempotent consumer, as follows:

import org.springframework.orm.jpa.JpaTemplate;

import org.apache.camel.spring.SpringRouteBuilder;
import static org.apache.camel.processor.idempotent.jpa.JpaMes
sageIdRepository.jpaMessageldRepository;

RouteBuilder builder = new SpringRouteBuilder () {
public void configure () {
from("seda:a") .idempotentConsumer (
header ("TransactionID"),
jpaMessageIdRepository (bean (JpaTemplate.class),
"myProcessorName")
) .to("seda:b");



Draft Idempotent Consumer

}i

Where the JPA message ID repository is initialized with two arguments: a
JpaTemplate instance, which provides the handle for the JPA database, and

a processor name, which uniquely identifies the current idempotent consumer
processor. The SpringRouteBuilder.bean () method is a shortcut that

references a bean defined in the Spring XML file. The JpaTemplate bean

provides a handle to the underlying JPA database. See the JPA documentation
for details of how to configure this bean.

For more details about setting up a JPA repository, see JPA Component
[http://activemq.apache.org/camel/jpa.html] documentation, the Spring JPA
[http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpal
documentation, and the sample code in the Camel JPA unit test
[https://svn.apache.org/repos/asf/activema/camel/trunk/components/camel-jpa/src/test].

REVISIT - NB: The doc for JPA is woefully inadequate. | need to beef this
up, either here or in the JPA component doc page.

109


http://activemq.apache.org/camel/jpa.html
http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test

