Messaging Endpoints

Draft

Messaging Mapper

Overview

Finding objects to map

92

The messaging mapper pattern describes how to map domain objects cleanly
to and from a canonical message format.

The purpose of the messaging mapper pattern is to create a clean mapping
from domain objects to a canonical message format, where the message
format is chosen to be as platform neutral as possible. In other words, the
chosen message format should be suitable for transmission through a message
bus on page 50, where the message bus is the backbone for integrating a
variety of different systems, some of which might not be object-oriented.

Many different approaches are possible, but not all of them are clean enough
to fulfill the requirements of a messaging mapper. For example, an obvious
way to transmit an object would be to use object serialization, which enables
you to write an object to a data stream using an unambiguous encoding
(supported natively in Java). This would not be a suitable approach to use
for the messaging mapper pattern, however, because the serialization format
is understood only by Java applications. Java object serialization would create
an impedance mismatch between the original application and the other
applications in the messaging system.

The requirements on a messaging mapper can be summarized as follows:

* The canonical message format used to transmit domain objects should be
suitable for consumption by non-object oriented applications.

* The mapper code should be implemented separately from the domain object
code and separately from the messaging infrastructure. FUSE Mediation
Router helps you to fulfill this requirement by providing hooks that can be
used to insert mapper code into a route.

* The mapper might need to find an effective way of dealing with certain
object-oriented concepts such as inheritance, object references, and object
trees. The complexity of these issues will vary from application to
application, but the aim of the mapper implementation must always be to
create messages that can be processed effectively by non-object-oriented
applications.

You could use one of the following mechanisms to find the objects to map:



Draft Messaging Mapper

* Find a registered bean—for singleton objects and small numbers of objects,
you could use the camelcontext registry to store references to beans. For

example, if a bean instance is instantiated using Spring XML, it is
automatically entered into the registry, where the bean is identified by the
value of its id attribute.

» Select objects using the JoSQL language—if all of the objects you want
to access are already instantiated at runtime, you could use the JoSQL
language to locate a specific object (or objects). For example, if you have
a class, org.apache.camel.builder.sql.Person, With a name bean

property and the incoming message has a userName header, you could
select the object whose name property equals the value of the UserName
header using the following code:

// Java
import static org.apache.camel.builder.sqgl.SglBuilder.sql;
import org.apache.camel.Expression;

Expression expression = sgl ("SELECT * FROM
org.apache.camel.builder.sgl.Person where name = :UserName");
Object value = expression.evaluate (exchange);

Where the syntax, : HeaderName, is used to substitute the value of a header
in a JoSQL expression.

* Dynamic—for a more scalable solution, it might be necessary to read object
data from a database. In some cases, the existing object-oriented application
might already provide a finder object that can load objects from the
database. In other cases, you might have to write some custom code to
extract objects from a database: the JDBC component and the SQL
component might be useful in these cases.

93



