
Appendix A. Migrating from ServiceMix
EIP
If you are currently an Apache ServiceMix user, you might already have implemented some Enterprise Integration
Patterns using the ServiceMix EIP module. It is recommended that you migrate these legacy patterns to FUSE
Mediation Router, which has more extensive support for Enterprise Integration Patterns. After migrating, you can
deploy your patterns either into a FUSE ESB container or into a ServiceMix container.

Migrating Endpoints .. 112
Common Elements ... 115
ServiceMix EIP Patterns ... 117
Content-Based Router ... 119
Content Enricher .. 121
Message Filter ... 123
Pipeline ... 125
Resequencer ... 127
Static Recipient List .. 129
Static Routing Slip ... 131
Wire Tap .. 132
XPath Splitter .. 134

111

Draft

Migrating Endpoints
Overview

A typical ServiceMix EIP route exposes a service that consumes exchanges
from the NMR. The route also defines one or more target destinations, to
which exchanges are sent. In the Mediation Router environment, the exposed
ServiceMix service maps to a source endpoint and the ServiceMix target
destinations map to target endpoints. The Mediation Router source endpoints
and target endpoints are both defined using endpoint URIs (see Architecture
in the Getting Started).

When migrating endpoints from ServiceMix EIP to FUSE Mediation Router,
you will need to express the ServiceMix services/endpoints as Mediation Router
endpoint URIs. You can adopt one of the following approaches:

• Connect to an existing ServiceMix service/endpoint through the ServiceMix
Camel module (which integrates Mediation Router with the NMR).

• Alternatively, if the existing ServiceMix service/endpoint represents a
ServiceMix binding component, you could replace the ServiceMix binding
component with an equivalent Mediation Router component (thus bypassing
the NMR).

The ServiceMix Camel module
The integration between Mediation Router and ServiceMix is provided by the
ServiceMix Camel module. This module is provided with ServiceMix, but
actually implements a plug-in for the Mediation Router product. From the
perspective of Mediation Router, the ServiceMix Camel module provides the
JBI component (see JBI in the Component Reference and JBI Component
[http://activemq.apache.org/camel/jbi.html]). When the ServiceMix Camel
module is included on your CLASSPATH, you can access the JBI component
by defining Mediation Router endpoint URIs with the jbi: component prefix.

Translating ServiceMix URIs into
Mediation Router endpoint URIs ServiceMix defines a flexible format for defining URIs, which is described in

detail in ServiceMix URIs [http://servicemix.apache.org/uris.html]. To translate
a ServiceMix URI into a Mediation Router endpoint URI, simply prefix it with
jbi:. In other words, the general format for Mediation Router URIs that

access a ServiceMix URI, ServiceMixURI, through the JBI component is as

follows:

jbi:ServiceMixURI

112

Draft

../getting_started/getting_started.pdf
../component_ref/component_ref.pdf
http://activemq.apache.org/camel/jbi.html
http://activemq.apache.org/camel/jbi.html
http://servicemix.apache.org/uris.html
http://servicemix.apache.org/uris.html

For example, consider the following configuration of the static recipient list
pattern in ServiceMix EIP. The eip:exchange-target elements define some

targets using the ServiceMix URI format.

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
xmlns:eip="http://servicemix.apache.org/eip/1.0"
xmlns:test="http://iona.com/demos/test" >

...
<eip:static-recipient-list service="test:recipients" end

point="endpoint">
<eip:recipients>
<eip:exchange-target uri="service:test:messageFilter"

/>
<eip:exchange-target uri="service:test:trace4" />

</eip:recipients>
</eip:static-recipient-list>
...

</beans>

When the preceding ServiceMix configuration is mapped to an equivalent
Mediation Router configuration, you get the following route:

<route>
<from uri="jbi:endpoint:test:recipients:endpoint"/>
<to uri="jbi:service:test:messageFilter"/>
<to uri="jbi:service:test:trace4"/>

</route>

Where the target endpoint URIs in this route are derived from the
corresponding ServiceMix URIs by adding the jbi: prefix at the start.

Representing ServiceMix targets
as Mediation Router endpoint
URIs

ServiceMix URIs are not the only format for specifying ServiceMix targets. For
example, the source of messages for a static recipient list pattern in ServiceMix
can be specified using a combination of service and endpoint attributes,

as follows:

<eip:static-recipient-list service="test:recipients" end
point="endpoint">

In order to translate this ServiceMix target into a Mediation Router endpoint
URI, start by reformatting it as a ServiceMix URI:

endpoint:test:recipients:endpoint

Then add the jbi: prefix to turn it into a Mediation Router endpoint URI, as

follows:

113

Draft

jbi:endpoint:test:recipients:endpoint

For full details of how to reformat ServiceMix targets as ServiceMix URIs, see
ServiceMix URIs [http://servicemix.apache.org/uris.html].

Replacing ServiceMix bindings
with Mediation Router
components

Instead of using the Mediation Router JBI component to route all your
messages through the ServiceMix NMR, you could use one of the many
supported Mediation Router components to connect directly to a source or
target endpoint. In particular, when sending messages to an external endpoint,
it is frequently more efficient to send the messages directly through a Mediation
Router component rather than sending them through the NMR and a
ServiceMix binding.

For details of all the Mediation Router components that are available, see
Components in the Component Reference and Mediation Router Components
[http://activemq.apache.org/camel/components.html].

114

Draft

http://servicemix.apache.org/uris.html
http://servicemix.apache.org/uris.html
../component_ref/component_ref.pdf
http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

Common Elements
Overview

When configuring ServiceMix EIP patterns in a ServiceMix configuration file,
there are some common elements that recur in many of the pattern schemas.
This section provides a brief overview of these common elements and explains
how they can be mapped to equivalent constructs in Mediation Router.

Exchange target
All of the patterns supported by ServiceMix EIP use the
eip:exchange-target element to specify JBI target endpoints.

Table A.1 on page 115 shows some examples of how to map some sample
eip:exchange-target elements to Mediation Router endpoint URIs.

Table A.1. Mapping the Exchange Target Element

Mediation Router Endpoint URIServiceMix EIP Target

jbi:interface:HelloWorld<eip:exchange-target

interface="HelloWorld" />

jbi:service:test:HelloWorldService<eip:exchange-target

service="test:HelloWorldService" />

jbi:service:test:HelloWorldService:secure<eip:exchange-target

service="test:HelloWorldService"

endpoint="secure" />

jbi:service:test:HelloWorldService<eip:exchange-target

uri="service:test:HelloWorldService"

/>

Predicates
The ServiceMix EIP component lets you define predicate expressions in the
XPath language (for example, XPath predicates can appear in
eip:xpath-predicate elements or in eip:xpath-splitter elements,

where the XPath predicate is specified using an xpath attribute).

ServiceMix XPath predicates can easily be migrated to equivalent constructs
in Mediation Router: that is, either the xpath element (in XML configuration)

115

Draft

or the xpath() command (in Java DSL). For example, the message filter

pattern in Mediation Router can incorporate an XPath predicate as follows:

<route>
<from uri="jbi:endpoint:test:messageFilter:endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:test:trace3"/>
</filter>

</route>

Where the xpath element specifies that only messages containing the

test:world element will pass through the filter.

Note
Mediation Router also supports a wide range of other scripting
languages (such as XQuery, PHP, Python, Ruby, and so on), which
can be used to define predicates. For details of all the supported
predicate languages, see Languages for Expressions and Predicates
in the Defining Routes and Languages for Expressions and Predicates
in the Defining Routes .

Namespace contexts
When using XPath predicates in the ServiceMix EIP configuration, it is
necessary to define a namespace context using the eip:namespace-context

element. The namespace can then be referenced using a namespaceContext

attribute.

When ServiceMix EIP configuration is migrated to Mediation Router, however,
there is no need to define namespace contexts, because Mediation Router
allows you to define XPath predicates without referencing a namespace
context. Hence, you can simply drop the eip:namespace-context elements

when you migrate to Mediation Router.

116

Draft

../defining_routes/defining_routes.pdf
../defining_routes/defining_routes.pdf

ServiceMix EIP Patterns
Supported patterns

The patterns supported by ServiceMix EIP are shown in Table A.2 on page 117.

Table A.2. ServiceMix EIP Patterns

How do we handle a situation where the
implementation of a single logical function

Content-Based
Router

(e.g., inventory check) is spread across
multiple physical systems?

How do we communicate with another
system if the message originator does not
have all the required data items available?

Content
Enricher

How can a component avoid receiving
uninteresting messages?

Message Filter

How can we perform complex processing on
a message while maintaining independence
and flexibility?

Pipeline

How can we get a stream of related but
out-of-sequence messages back into the
correct order?

Resequencer

How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Split
Aggregator

How do we route a message to a list of
specified recipients?

Static
Recipient List

How do we route a message consecutively
through a series of processing steps?

Static Routing
Slip

How do you inspect messages that travel on
a point-to-point channel?

Wire Tap

117

Draft

How can we process a message if it contains
multiple elements, each of which may have
to be processed in a different way?

XPath Splitter

118

Draft

Content-Based Router
Overview

A content-based router enables you to route messages to the appropriate
destination, where the routing decision is based on the message contents.
This pattern maps to the corresponding content-based router on page 52
pattern in FUSE Mediation Router.

Figure A.1. Content-Based Router Pattern

Example ServiceMix EIP route
The following example shows how to define a content-based router using the
ServicMix EIP component. Incoming messages are routed to the
http://test/pipeline/endpoint endpoint, if a test:echo element is

present in the message body, and to the test:recipients endpoint,

otherwise:

<eip:content-based-router service="test:router" endpoint="en
dpoint">
<eip:rules>
<eip:routing-rule>
<eip:predicate>
<eip:xpath-predicate xpath="count(/test:echo) = 1"

namespaceContext="#nsContext" />
</eip:predicate>
<eip:target>
<eip:exchange-target uri="endpoint:ht

tp://test/pipeline/endpoint" />
</eip:target>

</eip:routing-rule>
<eip:routing-rule>
<!-- There is no predicate, so this is the default des

tination -->
<eip:target>
<eip:exchange-target service="test:recipients" />

</eip:target>
</eip:routing-rule>

119

Draft

</eip:rules>
</eip:content-based-router>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:router:endpoint"/>
<choice>
<when>
<xpath>count(/test:echo) = 1</xpath>
<to uri="jbi:endpoint:http://test/pipeline/endpoint"/>

</when>
<otherwise>
<!-- This is the default destination -->
<to uri="jbi:service:test:recipients"/>

</otherwise>
</choice>

</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:router:endpoint").
choice().when(xpath("count(/test:echo) = 1")).to("jbi:en

dpoint:http://test/pipeline/endpoint").
otherwise().to("jbi:service:test:recipients");

120

Draft

Content Enricher
Overview

A content enricher is a pattern for augmenting a message with missing
information. The ServiceMix EIP content enricher is more or less equivalent
to a pipeline that adds missing data as the message passes through an
enricher target. Consequently, when migrating to Mediation Router, you can
re-implement the ServiceMix content enricher as a Mediation Router pipeline.

Figure A.2. Content Enricher Pattern

Example ServiceMix EIP route
The following example shows how to define a content enricher using the
ServiceMix EIP component. Incoming messages pass through the enricher
target, test:additionalInformationExtracter, which adds somemissing

data to the message before the message is sent on to its ultimate destination,
test:myTarget.

<eip:content-enricher service="test:contentEnricher" end
point="endpoint">
<eip:enricherTarget>
<eip:exchange-target service="test:additionalInformationEx

tracter" />
</eip:enricherTarget>
<eip:target>
<eip:exchange-target service="test:myTarget" />

</eip:target>
</eip:content-enricher>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

121

Draft

<route>
<from uri="jbi:endpoint:test:contentEnricher:endpoint"/>
<to uri="jbi:service:test:additionalInformationExtracter"/>

<to uri="jbi:service:test:myTarget"/>
</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:contentEnricher:endpoint").
to("jbi:service:test:additionalInformationExtracter").
to("jbi:service:test:myTarget");

122

Draft

Message Filter
Overview

A message filter is a processor that eliminates undesired messages based on
specific criteria. Filtering is controlled by specifying a predicate in the filter:
when the predicate is true, the incoming message is allowed to pass;

otherwise, it is blocked. This pattern maps to the corresponding message
filter on page 54 pattern in FUSE Mediation Router.

Figure A.3. Message Filter Pattern

Example ServiceMix EIP route
The following example shows how to define a message filter using the
ServiceMix EIP component. Incoming messages are passed through a filter
mechanism that blocks messages that lack a test:world element.

<eip:message-filter service="test:messageFilter" endpoint="en
dpoint">
<eip:target>
<eip:exchange-target service="test:trace3" />

</eip:target>
<eip:filter>
<eip:xpath-predicate xpath="count(/test:world) = 1"

namespaceContext="#nsContext"/>
</eip:filter>

</eip:message-filter>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:messageFilter:endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:test:trace3"/>

123

Draft

</filter>
</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:messageFilter:endpoint").
filter(xpath("count(/test:world) = 1")).
to("jbi:service:test:trace3");

124

Draft

Pipeline
Overview

The ServiceMix EIP pipeline pattern is used to pass messages through a single
transformer endpoint, where the transformer's input is taken from the source
endpoint and the transformer's output is routed to the target endpoint. This
pattern is thus a special case of the more general FUSE Mediation Router
pipes and filters on page 27 pattern, which enables you to pass an Inmessage
through multiple transformer endpoints.

Figure A.4. Pipes and Filters Pattern

Example ServiceMix EIP route
The following example shows how to define a pipeline using the ServiceMix
EIP component. Incoming messages are passed into the transformer endpoint,
test:decrypt, and the output from the transformer endpoint is then passed

into the target endpoint, test:plaintextOrder.

<eip:pipeline service="test:pipeline" endpoint="endpoint">
<eip:transformer>
<eip:exchange-target service="test:decrypt" />

</eip:transformer>
<eip:target>
<eip:exchange-target service="test:plaintextOrder" />

</eip:target>
</eip:pipeline>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:pipeline:endpoint"/>
<to uri="jbi:service:test:decrypt"/>

125

Draft

<to uri="jbi:service:test:plaintextOrder"/>
</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:pipeline:endpoint").
pipeline("jbi:service:test:decrypt", "jbi:ser

vice:test:plaintextOrder");

126

Draft

Resequencer
Overview

The resequencer pattern enables you to resequence messages according to
the sequence number stored in an NMR property. The ServiceMix EIP
resequencer pattern maps to the Mediation Router resequencer on page 66
configured with the stream resequencing algorithm.

Figure A.5. Resequencer Pattern

Sequence number property
The sequence of messages emitted from the resequencer is determined by
the value of the sequence number property: messages with a low sequence
number are emitted first and messages with a higher number are emitted
later. By default, the sequence number is read from the
org.apache.servicemix.eip.sequence.number property in ServiceMix.

But you can customize the name of this property using the
eip:default-comparator element in ServiceMix.

The equivalent concept in Mediation Router is a sequencing expression,
which can be any message-dependent expression. When migrating from
ServiceMix EIP, you would normally define an expression that extracts the
sequence number from a header (a Mediation Router header is equivalent to
an NMR message property). For example, to extract a sequence number from
a seqnum header, you could use the simple expression, header.seqnum.

Example ServiceMix EIP route
The following example shows how to define a resequencer using the ServiceMix
EIP component.

<eip:resequencer
service="sample:Resequencer"
endpoint="ResequencerEndpoint"
comparator="#comparator"
capacity="100"
timeout="2000">
<eip:target>

127

Draft

<eip:exchange-target service="sample:SampleTarget" />
</eip:target>

</eip:resequencer>

<!-- Configure default comparator with custom sequence number
property -->
<eip:default-comparator id="comparator" sequenceNumberKey="se
qnum"/>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:sample:Resequencer:ResequencerEnd

point"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="jbi:service:sample:SampleTarget" />
<stream-config capacity="100" timeout="2000"/>

</resequencer>
</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:sample:Resequencer:ResequencerEndpoint").
resequencer(header("seqnum")).
stream(new StreamResequencerConfig(100, 2000L)).
to("jbi:service:sample:SampleTarget");

128

Draft

Static Recipient List
Overview

A recipient list is a type of router that sends each incoming message to
multiple different destinations. The ServiceMix EIP recipient list is restricted
to processing InOnly and RobustInOnly exchange patterns. Moreover, the list
of recipients must be static. This pattern maps to the recipient list on page
56 with fixed destination pattern in FUSE Mediation Router.

Figure A.6. Static Recipient List Pattern

Example ServiceMix EIP route
The following example shows how to define a static recipient list using the
ServiceMix EIP component. Incoming messages are copied to the
test:messageFilter endpoint and to the test:trace4 endpoint.

<eip:static-recipient-list service="test:recipients" end
point="endpoint">
<eip:recipients>
<eip:exchange-target service="test:messageFilter" />
<eip:exchange-target service="test:trace4" />

</eip:recipients>
</eip:static-recipient-list>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:recipients:endpoint"/>
<to uri="jbi:service:test:messageFilter"/>
<to uri="jbi:service:test:trace4"/>

</route>

129

Draft

Note
The preceding route configuration appears to have the same syntax
as a Mediation Router pipeline pattern. The crucial difference is that
the preceding route is intended for processing InOnly message
exchanges, which are processed in a slightly different way—see Pipes
and Filters on page 27 for more details.

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:recipients:endpoint").
to("jbi:service:test:messageFilter", "jbi:ser

vice:test:trace4");

130

Draft

Static Routing Slip
Overview

The static routing slip pattern in the ServiceMix EIP component is used to
route an InOutmessage exchange through a series of endpoints. Semantically,
it is equivalent to the pipeline on page 27 pattern in FUSE Mediation Router.

Example ServiceMix EIP route
The following example shows how to define a static routing slip using the
ServiceMix EIP component. Incoming messages pass through each of the
endpoints, test:procA, test:procB, and test:procC, where the output

of each endpoint is connected to the input of the next endpoint in the chain.
The final endpoint, tets:procC, sends its output (Out message) back to the

caller.

<eip:static-routing-slip service="test:routingSlip" end
point="endpoint">
<eip:targets>
<eip:exchange-target service="test:procA" />
<eip:exchange-target service="test:procB" />
<eip:exchange-target service="test:procC" />

</eip:targets>
</eip:static-routing-slip>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:routingSlip:endpoint"/>
<to uri="jbi:service:test:procA"/>
<to uri="jbi:service:test:procB"/>
<to uri="jbi:service:test:procC"/>

</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:routingSlip:endpoint").
pipeline("jbi:service:test:procA", "jbi:ser

vice:test:procB", "jbi:service:test:procC");

131

Draft

Wire Tap
Overview

The wire tap pattern allows you to route messages to a separate tap location
before it is forwarded to the ultimate destination. The ServiceMix EIP wire
tap pattern maps to the wire tap on page 110 pattern in Mediation Router.

Figure A.7. Wire Tap Pattern

Example ServiceMix EIP route
The following example shows how to define a wire tap using the ServiceMix
EIP component. The In message from the source endpoint is copied to the
In-listener endpoint, before being forwarded on to the target endpoint. If you
want to monitor any returned Outmessages or Faultmessages from the target
endpoint, you would also need to define an Out listener (using the
eip:outListner element) and a Fault listener (using the

eip:faultListener element).

<eip:wire-tap service="test:wireTap" endpoint="endpoint">
<eip:target>
<eip:exchange-target service="test:target" />

</eip:target>
<eip:inListener>
<eip:exchange-target service="test:trace1" />

</eip:inListener>
</eip:wire-tap>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:wireTap:endpoint"/>

132

Draft

<to uri="jbi:service:test:trace1"/>
<to uri="jbi:service:test:target"/>

</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:wireTap:endpoint").to("jbi:ser
vice:test:trace1", "jbi:service:test:target");

133

Draft

XPath Splitter
Overview

A splitter is a type of router that splits an incoming message into a series of
outgoing messages, where each of the messages contains a piece of the
original message. The ServiceMix EIP XPath splitter pattern is restricted to
using the InOnly and RobustInOnly exchange patterns. The expression that
defines how to split up the original message is defined in the XPath language.
The XPath splitter pattern maps to the splitter on page 59 pattern in Mediation
Router.

Figure A.8. XPath Splitter Pattern

Forwarding NMR attachments
and properties The eip:xpath-splitter element supports a forwardAttachments

attribute and a forwardProperties attribute, either of which can be set to

true, if you want the splitter to copy the incoming message's attachments

or properties to the outgoing messages. The corresponding splitter pattern in
Mediation Router does not support any such attributes. By default, the
incoming message's headers are copied to each of the outgoing messages by
the Mediation Router splitter.

Example ServiceMix EIP route
The following example shows how to define a splitter using the ServiceMix
EIP component. The specified XPath expression, /*/*, would cause an

incoming message to split at every occurrence of a nested XML element (for
example, the /foo/bar and /foo/car elements would be split into distinct

messages).

<eip:xpath-splitter service="test:xpathSplitter" endpoint="en
dpoint"

xpath="/*/*" namespaceContext="#nsContext">

<eip:target>
<eip:exchange-target uri="service:http://test/router" />

134

Draft

</eip:target>
</eip:xpath-splitter>

Equivalent Mediation Router XML
route The following example shows how to define an equivalent route using

Mediation Router XML configuration:

<route>
<from uri="jbi:endpoint:test:xpathSplitter:endpoint"/>
<splitter>
<xpath>/*/*</xpath>
<to uri="jbi:service:http://test/router"/>

</splitter>
</route>

Equivalent Mediation Router Java
DSL route The following example shows how to define an equivalent route using the

Mediation Router Java DSL:

from("jbi:endpoint:test:xpathSplitter:endpoint").
splitter(xpath("/*/*")).to("jbi:service:ht

tp://test/router");

135

Draft

136

Draft

