
Multicast
Overview

Themulticast pattern is a variation of the recipient list with fixed destinations
pattern, which is compatible with the InOut message exchange pattern (in
contrast to recipient list, which is only compatible with the InOnly exchange
pattern).

Figure 22. Multicast Pattern

Multicast with a custom
aggregation strategy Whereas the multicast processor receives multiple Out messages in response

to the original request (one from each of the recipients), the original caller is
only expecting to receive a single reply. There is thus an inherent mismatch
on the reply leg of the message exchange. In order to overcome this mismatch,
you must provide a custom aggregation strategy to the multicast processor.
The aggregation strategy class is responsible for aggregating all of the Out
messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers
an item for sale to a list of buyers. The buyers each put in a bid for the item
and the seller automatically selects the bid with the highest price. You can
implement the logic for distributing an offer to a fixed list of buyers using the
multicast() DSL command, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregation
Strategy()).

to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy
er3");

79

MulticastDraft



Where the seller is represented by the endpoint, cxf:bean:offer, and the

buyers are represented by the endpoints, cxf:bean:Buyer1,

cxf:bean:Buyer2, cxf:bean:Buyer3. In order to consolidate the bids

received from the various buyers, the multicast processor uses the aggregation
strategy, HighestBidAggregationStrategy. You can implement the

HighestBidAggregationStrategy in Java, as follows:

// Java
import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements Aggreg
ationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {

float oldBid = oldExchange.getOut().getHeader("Bid",
Float.class);

float newBid = newExchange.getOut().getHeader("Bid",
Float.class);

return (newBid > oldBid) ? newExchange : oldExchange;

}
}

Where it is assumed here that the buyers insert the bid price into a header
named, Bid. For more details about custom aggregation strategies, see

Aggregator on page 61.

Parallel processing
By default, the multicast processor invokes each of the recipient endpoints
one after the other (in the order listed in the to() command). In some cases,

this might give rise to unacceptably long latency. To avoid such long latency
times, you have the option of enabling parallel processing in the multicast
processor by passing the value true as the second argument. For example,

to enable parallel processing in the electronic auction example, you could
define the route as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregation
Strategy(), true).

to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy
er3");

Where the multicast processor now invokes each of the buyer endpoints in a
separate thread.

80

DraftMessage Routing


