
Resequencer
Overview

The resequencer pattern enables you to resequence messages according to
a sequencing expression. Messages that generate a low value for the
sequencing expression are moved to the front of the batch and messages that
generate a high value are moved to the back.

Figure 20. Resequencer Pattern

Camel supports two resequencing algorithms:

• Batch resequencing collects messages into a batch, sorts the messages
and sends them to their output.

• Stream resequencing re-orders (continuous) message streams based on
the detection of gaps between messages.

Batch resequencing
The batch resequencing algorithm is enabled by default. For example, to
resequence a batch of incoming messages based on the value of a timestamp
contained in the TimeStamp header, you could define the following route in

Java DSL:

from("direct:start").resequencer(head
er("TimeStamp")).to("mock:result");

By default, the batch is obtained by collecting all of the incoming messages
that arrive in a time interval of 1000 milliseconds (default batch timeout),
up to a maximum of 100 messages (default batch size). You can customize
the values of the batch timeout and the batch size by appending a batch()

DSL command, which takes a BatchResequencerConfig instance as its

sole argument. For example, to modify the preceding route so that the batch
consists of messages collected in a 4000 millisecond time window, up to a
maximum of 300 messages, you could define the Java DSL route as follows:

66

DraftMessage Routing



import org.apache.camel.model.config.BatchResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(head
er("TimeStamp")).batch(new BatchResequencerCon
fig(300,4000L)).to("mock:result");

}
};

You can also use multiple expressions to sort messages in a batch. For
example, if you want to sort incoming messages, first of all according to their
JMS priority (as recorded in the JMSPriority header) and second, according

to the value of their time stamp (as recorded in the TimeStamp header), you

could define a route like the following:

from("direct:start").resequencer(header("JMSPriority"), head
er("TimeStamp")).to("mock:result");

In this case, messages with the highest priority (that is, low JMS priority
number) would be moved to the front of the batch. If more than one message
has the highest priority, the highest priority messages would be ordered
amongst themselves according to the value of the TimeStamp header.

You can also specify a batch resequencer pattern using XML configuration.
For example, to define a batch resequencer with a batch size of 300 and a
batch timeout of 4000 milliseconds:

<camelContext id="resequencerBatch" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start" />
<resequencer>
<simple>header.TimeStamp</simple>
<to uri="mock:result" />
<!--
batch-config can be omitted for default (batch)

resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>

67

ResequencerDraft



</route>
</camelContext>

Stream resequencing
To enable the stream resequencing algorithm, you need to append stream()

to the resequencer() DSL command. For example, to resequence incoming

messages based on the value of a sequence number in the seqnum header,

you could define a DSL route as follows:

from("direct:start").resequencer(header("se
qnum")).stream().to("mock:result");

The stream-processing resequencer algorithm is based on the detection of
gaps in a message stream, rather than on a fixed batch size. Gap detection
in combination with timeouts removes the constraint of having to know the
number of messages of a sequence (that is, the batch size) in advance.
Messages must contain a unique sequence number for which a predecessor
and a successor is known. For example a message with the sequence number
3 has a predecessor message with the sequence number 2 and a successor

message with the sequence number 4. The message sequence 2,3,5 has a

gap because the successor of 3 is missing. The resequencer therefore has to

retain message 5 until message 4 arrives (or a timeout occurs).

By default, the stream resequencer is configured with a timeout 1000
milliseconds and a maximum message capacity of 100. To customize the
stream's timeout and capacity, you can pass a StreamResequencerConfig

object as an argument to stream(). For example, to configure a stream

resequencer with a capacity of 5000 and a timeout of 4000 milliseconds,
you could define a route as follows:

// Java
import org.apache.camel.model.config.StreamResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(header("seqnum")).
stream(new StreamResequencerConfig(5000, 4000L)).

to("mock:result");
}

};

68

DraftMessage Routing



If the maximum time delay between successive messages (that is, messages
with adjacent sequence numbers) in a message stream is known, the
resequencer's timeout parameter should be set to this value. In this case, you
can guarantee that all messages in the stream are delivered in the correct
order to the next processor. The lower the timeout value is compared to the
out-of-sequence time difference, the more likely it is that the resequencer will
deliver messages out of sequence. Large timeout values should be supported
by sufficiently high capacity values, where the capacity parameter is used to
prevent the resequencer from running out of memory.

If you want to use sequence numbers of some type other than long, you

would need to define a custom comparator, as follows:

// Java
ExpressionResultComparator<Exchange> comparator = new MyCompar
ator();
StreamResequencerConfig config = new StreamResequencerCon
fig(5000, 4000L, comparator);
from("direct:start").resequencer(header("seqnum")).stream(con
fig).to("mock:result");

You can also specify a stream resequencer pattern using XML configuration.
For example, to define a stream resequencer with a capacity of 5000 and a
timeout of 4000 milliseconds:

<camelContext id="resequencerStream" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>
</route>

</camelContext>

69

ResequencerDraft


