
Aggregator
Overview

The aggregator pattern enables you to combine a batch of related messages
into a single message. To control the aggregator's behavior, Mediation Router
allows you to specify the properties described in Enterprise Integration
Patterns, as follows:

• Correlation expression—determines which messages should be aggregated
together. The correlation expression is evaluated on each incoming message
to produce a correlation key. Incoming messages with the same correlation
key are then grouped into the same batch. For example, if you want to
aggregate all incoming messages into a single message, you could use a
constant expression.

• Completeness condition—determines when a batch of messages is
complete. You can specify this either as a simple size limit or, more
generally, you can specify a predicate condition that flags when the batch
is complete.

• Aggregation algorithm—combines the message exchanges for a single
correlation key into a single message exchange. The default strategy simply
chooses the latest message, which makes it ideal for throttling message
flows.

For example, consider a stock market data system that receives 30,000
messages per second. You might want to throttle down the message flow if,
say, your GUI tool cannot cope with such a massive update rate. The incoming
stock quotes could be aggregated together simply by choosing the latest quote
and discarding the older prices. (You could apply a delta processing algorithm,
if you prefer to capture some of the history.)

61

AggregatorDraft



Figure 19. Aggregator Pattern

Simple aggregator
You can define a simple aggregator by calling the aggregator() DSL

command with a correlation expression as its sole argument (default limits
are applied to the batch size—see Specifying the batch size on page 62). The
following example shows how to aggregate stock quotes, so that only the
latest quote is propagated for the symbol contained in the StockSymbol

header:

from("direct:start").aggregator(header("StockSym
bol")).to("mock:result");

The following example shows how to configure the same route using XML
configuration:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator>
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

Specifying the batch size
Normally, you would also specify how many messages should be collected
(the batch size) before the aggregate message gets propagated to the target
endpoint. Mediation Router provides several different settings for controlling
the batch size, as follows:

• Batch size—specifies an upper limit to the number of messages in a batch
(default is 100). For example, the following Java DSL route sets an upper
limit of 10 message in a batch:

62

DraftMessage Routing



from("direct:start").aggregator(header("StockSymbol")).batch
Size(10).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator batchSize="10">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Batch timeout—specifies a time interval, in units of milliseconds, during
which messages are collected (default is 1000 ms). If no messages are
received during a given time interval, no aggregate message will be
propagated. For example, the following Java DSL route aggregates the
messages that arrive during each ten second window:

from("direct:start").aggregator(header("StockSymbol")).batch
Timeout(10000).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator batchTimeout="10000">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Completed predicate—specifies an arbitrary predicate expression that
determines when the current batch is complete. If the predicate resolves
to true, the current message becomes the last message of the batch. For

example, if you want to terminate a batch of stock quotes every time you
receive an ALERTmessage (as indicated by the value of a MsgType header),

you could define a route like the following:

63

AggregatorDraft



from("direct:start").aggregator(header("StockSymbol")).
completedPredicate(header("Ms

gType").isEqualTo("ALERT")).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator>
<simple>header.StockSymbol</simple>
<completedPredicate>

<simple>header.MsgType = 'ALERT'</simple>
</completedPredicate>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

You can also combine batch limiting mechanisms, in which case a batch is
completed whenever the first of the limits is reached. For example, to specify
all three limits simultaneously:

from("direct:start").aggregator(header("StockSymbol")).
batchSize(10).
batchTimeout(10000).
completedPredicate(header("MsgType").isEqualTo("ALERT")).

to("mock:result");

Custom aggregation strategy
The default aggregation strategy is to select the most recent message in a
batch, discarding all others. If you want to apply a different aggregation
strategy, you can implement a custom version of the
org.apache.camel.processor.aggregate.AggregationStrategy

interface and pass it as the second argument to the aggregator() DSL

command. For example, to aggregate messages using the custom strategy
class, MyAggregationStrategy, you could define a route like the following:

from("direct:start").aggregator(header("StockSymbol"), new
MyAggregationStrategy()).to("mock:result");

64

DraftMessage Routing



The following code implements a custom aggregation strategy,
MyAggregationStrategy, that concatenates all of the batch messages into

a single, large message:

// Java
package com.my_package_name

import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class MyAggregationStrategy implements Aggregation
Strategy {

public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {

String oldBody = oldExchange.getIn().get
Body(String.class);

String newBody = newExchange.getIn().get
Body(String.class);

String concatBody = oldBody.concat(newBody);
// Set the body equal to a concatenation of old and

new.
oldExchange.getIn().setBody(concatBody);
// Ignore the message headers!
// (in a real application, you would probably want to

do
// something more sophisticated with the header data).

return oldExchange;
}

}

You can also configure a route with a custom aggregation strategy in XML,
as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator strategyRef="aggregatorStrategy">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

<bean id="aggregatorStrategy" class="com.my_package_name.MyAg
gregationStrategy"/>

65

AggregatorDraft


