Messaging Channels

Draft

Publish Subscribe Channel

Overview

A publish-subscribe channel is a message channel on page 22 that enables
multiple subscribers to consume any given message (contrast this with a

point-to-point channel on page 36). Publish-subscribe channels are frequently
used as a means of broadcasting events or notifications to multiple subscribers.

Figure 10. Publish Subscribe Channel Pattern

Publisher Address
Changed

Components that support
publish-subscribe channel

JMS

38

— ﬂ —
Address Subscriber
Changed

Address Subscriber
Changed

Puhblish-Subscribe Address Subscriber
Channel Changed

The following Mediation Router components support the publish-subscribe
channel pattern:

* JMS on page 38
* xActiveMQ on page 39

* XMPP on page 39

In JMS, a publish-subscribe channel is represented by a topic. For example,
you could specify the endpoint URI for a JMS topic called stockQuotes as

follows:



ActiveMQ

XMPP

Static subscription lists

Java DSL example

XML configuration example

Draft Publish Subscribe Channe

jms:topic:StockQuotes

See JMS in the Component Reference for more details.

In ActiveMQ, a publish-subscribe channel is represented by a topic. For
example, you could specify the endpoint URI for an ActiveMQ topic called
StockQuotes as follows:

activemqg:topic:StockQuotes

See ActiveMQ in the Component Reference for more details.

The XMPP (Jabber) component supports the publish-subscribe channel pattern
when it is used in the group communication mode. See XMPP in the
Component Reference for more details.

If you prefer, you can also implement publish-subscribe logic within the
Mediation Router application itself. A simple approach is to define a static
subscription list, where the target endpoints are all explicitly listed at the end
of the route (this approach is not as flexible as a JMS or ActiveMQ topic,
however).

The following Java DSL example shows how to simulate a publish-subscribe
channel with a single publisher, seda:a, and three subscribers, seda:b,

seda:c, and seda:d (works only for the /nOnly message exchange pattern):

from("seda:a") .to("seda:b", "seda:c", "seda:d");

The following example shows how to configure the same route in XML:

<camelContext id="buildStaticRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</route>
</camelContext>

39


../component_ref/component_ref.pdf
../component_ref/component_ref.pdf
../component_ref/component_ref.pdf

