
Guaranteed Delivery
Overview

Guaranteed delivery means that once a message has been pushed into a
message channel, the messaging system guarantees that the message will
reach its destination, even if parts of the application should fail. In general,
messaging systems implement the guaranteed delivery pattern by writing
messages to persistent storage before attempting to deliver them to their
destination.

Figure 12. Guaranteed Delivery Pattern

Components that support
guaranteed delivery The following Mediation Router components support the guaranteed delivery

pattern:

• JMS on page 44

• ActiveMQ on page 45

• ActiveMQ Journal on page 47

JMS
In JMS, the deliveryPersistent query option indicates whether persistent

storage of messages is enabled or not. But it is normally unnecessary to set
this option, because the default behavior is to enable persistent delivery. To
configure all the details of guaranteed delivery, it is necessary to set
configuration options on the JMS provider. These details vary, depending on
what JMS provider you are using. For example, MQSeries, TibCo, BEA, Sonic,
and so on, all provide various qualities of service to support guaranteed
delivery.

44

DraftMessaging Channels



See JMS in the Component Reference for more details.

ActiveMQ
In ActiveMQ, messaged persistence is enabled by default. From version 5
onwards, ActiveMQ uses the AMQ message store as the default persistence
mechanism. There are several different approaches you can take to enabling
message persistence in ActiveMQ.

The simplest option (different from the figure shown above) is to enable
persistence in a central broker and then connect to the broker using a reliable
protocol. After the message has been sent to the central broker, delivery to
consumers is guaranteed. For example, in the Mediation Router configuration
file, META-INF/spring/camel-context.xml, you could configure the

ActiveMQ component to connect to the central broker using the OpenWire/TCP
protocol as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>

</bean>
...

</beans>

If you prefer to implement an architecture where messages are stored locally
before being sent to a remote endpoint (similar to the figure shown above),
you can do this by instantiating an embedded broker in your Mediation Router
application. A simple way to achieve this is to use the ActiveMQ Peer-to-Peer
protocol, which implicitly creates an embedded broker in order to communicate
with other peer endpoints. For example, in the camel-context.xml

configuration file, you could configure the ActiveMQ component to connect
to all of the peers in group, GroupA, as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="peer://GroupA/broker1"/>

</bean>
...

</beans>

45

Guaranteed DeliveryDraft

../component_ref/component_ref.pdf


Where broker1 is the broker name of the embedded broker (other peers in

the group should use different broker names). One limiting feature of the
Peer-to-Peer protocol is that it relies on IP multicast to locate the other peers
in its group. This makes it unsuitable for use in wide area networks (and even
some local area networks do not have IP multicast enabled).

A more flexible way to create an embedded broker in the ActiveMQ component
is to exploit ActiveMQ's VM protocol, which connects to an embedded broker
instance. If a broker of the required name does not already exist, the VM
protocol automatically creates one. You can use this mechanism to create an
embedded broker with custom configuration. For example:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="vm://broker1?brokerCon

fig=xbean:activemq.xml"/>
</bean>
...

</beans>

Where activemq.xml is an ActiveMQ file, which configures the embedded

broker instance. Within the ActiveMQ configuration file, you can choose to
enable one of the following persistence mechanisms:

• AMQ persistence—(the default) a fast and reliable message store that is
native to ActiveMQ. For details, see amqPersistenceAdapter
[http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/amqPersistenceAdapter.html#]
and AMQ Message Store
[http://activemq.apache.org/amq-message-store.html].

• JDBC persistence—uses JDBC to store messages in any JDBC-compatible
database. For details, see jdbcPersistenceAdapter
[http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/jdbcPersistenceAdapter.html#]
and ActiveMQ Persistence [http://activemq.apache.org/persistence.html].

• Journal persistence—a fast persistence mechanism that stores messages
in a rolling log file. For details, see journalPersistenceAdapter
[http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/journalPersistenceAdapter.html#]
and ActiveMQ Persistence [http://activemq.apache.org/persistence.html].

• Kaha persistence—a persistence mechanism developed specially for
ActiveMQ. For details, see kahaPersistenceAdapter

46

DraftMessaging Channels

http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/amqPersistenceAdapter.html#
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/amqPersistenceAdapter.html#
http://activemq.apache.org/amq-message-store.html
http://activemq.apache.org/amq-message-store.html
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/jdbcPersistenceAdapter.html#
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/jdbcPersistenceAdapter.html#
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/journalPersistenceAdapter.html#
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/journalPersistenceAdapter.html#
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/kahaPersistenceAdapter.html#


[http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/kahaPersistenceAdapter.html#]
and ActiveMQ Persistence [http://activemq.apache.org/persistence.html].

See ActiveMQ in the Component Reference for more details.

ActiveMQ Journal
The ActiveMQ Journal component is optimized for the special use case where
multiple, concurrent producers write messages to queues, but there is only
one active consumer. Messages are stored in rolling log files and concurrent
writes are aggregated in order to boost efficiency.

See ActiveMQ Journal in the Component Reference for more details.

47

Guaranteed DeliveryDraft

http://activemq.apache.org/maven/activemq-core/xsddoc/http___activemq.org_config_1.0/element/kahaPersistenceAdapter.html#
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
../component_ref/component_ref.pdf
../component_ref/component_ref.pdf

