
Pipes and Filters
Overview

The pipes and filters pattern describes a way of constructiing a route by
creating a chain of filters, where the output of one filter is fed into the input
of the next filter in the pipeline (analogous to the UNIX pipe command). The

advantage of the pipeline approach is that it enables you to compose services
(some of which can be external to the Mediation Router application) in order
to create more complex forms of message processing.

Figure 4. Pipes and Filters Pattern

Pipeline for the InOut exchange
pattern Normally, all of the endpoints in a pipeline would have an input (In message)

and an output (Out message), which implies that they are compatible with
the InOut message exchange pattern. A typical message flow through an
InOut pipeline is shown in Figure 5 on page 27.

Figure 5. Pipeline for InOut Exchanges

Where the pipeline connects the output of each endpoint to the input of the
next one. The Out message from the final endpoint gets sent back to the
original caller. You can define a route for this pipeline, as follows:

from("jms:RawOrders").pipeline("cxf:bean:decrypt",
"cxf:bean:authenticate", "cxf:bean:dedup", "jms:CleanOrders");

The same route can be configured in XML, as follows:

27

Pipes and FiltersDraft



<camelContext id="buildPipeline" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="jms:RawOrders"/>
<to uri="cxf:bean:decrypt"/>
<to uri="cxf:bean:authenticate"/>
<to uri="cxf:bean:dedup"/>
<to uri="jms:CleanOrders"/>

</route>
</camelContext>

There is no dedicated pipeline element in XML: the preceding combination
of from and to elements is semantically equivalent to a pipeline. See

Comparison of pipeline() and to() DSL commands on page 28.

Pipeline for the InOnly and
RobustInOnly exchange patterns When there are no Outmessages available from the endpoints in the pipeline

(as is the case for the InOnly and RobustInOnly exchange patterns), a

pipeline cannot be plumbed together in the normal way. In this special case,
the pipeline is constructed by passing a copy of the original In message to
each of the endpoints in the pipeline, as shown in Figure 6 on page 28. This
type of pipeline is equivalent to a recipient list with fixed destinations—see
Recipient List on page 56.

Figure 6. Pipeline for InOnly Exchanges

The route for this pipeline is defined using the same syntax as an InOut
pipeline (either in Java DSL or in XML).

Comparison of pipeline() and to()
DSL commands In the Java DSL, you can define a pipeline route using either of the following

syntaxes:

• Using the pipeline() processor command—use the pipeline processor to
construct a pipeline route as follows:

from(SourceURI).pipeline(FilterA, FilterB, TargetURI);

28

DraftMessaging Systems



• Using the to() command—use the to() command to construct a pipeline

route as follows:

from(SourceURI).to(FilterA, FilterB, TargetURI);

Alternatively, you could use the exactly equivalent syntax:

from(SourceURI).to(FilterA).to(FilterB).to(TargetURI);

You should excercise caution when using the to() command syntax, however,

because it is not always equivalent to a pipeline processor. In the Java DSL,
the meaning of to() can be modified by the preceding command in the route.

For example, when the multicast() command precedes the to() command,

it binds the listed endpoints into a multicast pattern, instead of a pipeline
pattern—see Multicast on page 79.

29

Pipes and FiltersDraft


