Messaging Systems

Message

Overview

Figure 1. Message Pattern

Sender Message

Types of message

Message structure

20

-

Draft

A message is the smallest unit for transmitting data in a messaging system
(represented by the grey dot in the figure below). The message itself might

have some internal structure—for example, a message containing multiple

parts—which is represented by geometrical figures attached to the grey dot
in the figure below.

Receiver

Mediation Router defines the following distinct message types:

* /n message—a message that travels from a source endpoint to a target
endpoint (typically, initiating a message exchange).

» Out message—a message that travels from a target endpoint back to a
source endpoint (usually in response to an /n message).

* Fault message—a message that travels from a target endpoint back to a
source endpoint for the purpose of indicating an exception or error condition
(usually in response to an /n message).

All of these message types are represented internally by the
org.apache.camel.Message interface.

By default, Mediation Router applies the following structure to all message
types:

* Headers—containing metadata or header data extracted from the message.
* Body—usually containing the entire message in its original form.

It is important to bear in mind that this division into headers and body is an
abstract model of the message. Mediation Router supports many different
compoments, which generate a wide variety of message formats. Ultimately,



Correlating messages

Exchange objects

Accessing messages

Draft Message

it is the underlying component implementation that decides what gets placed
into the headers and body of a message.

Internally, Mediation Router keeps track of a message ID, which could be
used to correlate individual messages. In practice, however, the most important
way that Mediation Router correlates messages is through exchange objects.

An exchange object is an entity that encapsulates related messages, where
the collection of related messages is referrred to as a message exchange and
the rules governing the sequence of messages are referred to as an exchange
pattern. For example, some common exchange patterns would be: one-way
event messages (consisting of an In message); request-reply exchanges
(consisting of an In message, followed by an Out message).

When defining a routing rule in the Java DSL, you can access the headers
and body of a message using the following DSL builder methods:

* header (String name), body ()—return named header and body of the
current /n message.

* outBody () —return body of the current Out message.
* faultBody ()—return body of the current Fault message.

For example, to populate the Out message's username header by copying

from the equivalent header in the /n message, you could use the following
route defined in Java DSL:

from (SourceURL) .setOutHeader ("username", header ("user
name") ) .to (TargetURL) ;

21



