
Fuse MQ Enterprise
Fault Tolerant Messaging

Version 7.0
Febuary 2012

Integration Everywhere

Fault Tolerant Messaging
Version 7.0

Updated: 21 Feb 2012
Copyright © 2011 FuseSource Corp. All rights reserved.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, Fuse, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introduction ... 9
2. Client Failover ... 11

Failover Protocol .. 12
Static Failover ... 13
Dynamic Failover ... 15

Discovery Protocol ... 19
Discovery Agents ... 20

Fuse Fabric Discovery Agent ... 22
Static Discovery Agent .. 23
Multicast Discovery Agent .. 24
Zeroconf Discovery Agent ... 26

Dynamic Discovery Protocol ... 28
3. Master/Slave .. 31

Shared Nothing Master/Slave .. 32
Shared File System Master/Slave ... 38
Shared JDBC Master/Slave ... 43

4. Master/Slave and Broker Networks .. 49
Index .. 53

5Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

List of Figures
3.1. Shared Nothing Master/Slave Group Initial State ... 32
3.2. Shared Nothing Master/Slave Group after Master Failure .. 34
3.3. Shared File System Initial State .. 39
3.4. Shared File System after Master Failure ... 40
3.5. Shared File System after Master Restart ... 42
3.6. JDBC Master/Slave Initial State .. 44
3.7. JDBC Master/Slave after Master Failure .. 45
3.8. JDBC Master/Slave after Master Restart ... 47
4.1. Master/Slave Groups on Two Host Machines ... 50
4.2. Broker Network Consisting of Host Pairs ... 51

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.06

List of Tables
2.1. Failover Transport Options .. 13
2.2. Broker-side Failover Properties ... 16
2.3. Dynamic Discovery Protocol Options ... 28
3.1. Configuration Options for a Master in a Shared Nothing Master/Slave Group 34
3.2. Attributes for Configuring the Master Connector Service ... 35
3.3. Attributes for Configuring a Master Connector on the Broker .. 36

7Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

List of Examples
2.1. Simple Failover URI .. 14
2.2. Broker for Dynamic Failover .. 17
2.3. Failover URI for Connecting to a Failover Cluster ... 18
2.4. Enabling a Discovery Agent on a Broker ... 20
2.5. Fuse Fabric Discovery Agent URI Format .. 22
2.6. Client Connection URL using Fuse Fabric Discovery .. 22
2.7. Static Discovery Agent URI Format ... 23
2.8. Discovery URL using the Static Discovery Agent ... 23
2.9. Multicast Discovery Agent URI Format ... 24
2.10. Enabling a Multicast Discovery Agent on a Broker ... 24
2.11. Client Connection URL using Multicast Discovery ... 25
2.12. Zeroconf Discovery Agent URI Format .. 26
2.13. Enabling a Multicast Discovery Agent on a Broker ... 27
2.14. Client Connection URL using Zeroconf Discovery .. 27
2.15. Dynamic Discovery URI ... 28
2.16. Discovery Protocol URI .. 29
2.17. Injecting Transport Options into a Discovered Transport .. 29
3.1. Master Configuration for Shared Nothing Master/Slave Group .. 35
3.2. Configuring the Master Connector as a Service ... 36
3.3. Configuring the Master Connector Directly .. 37
3.4. URI for Connecting to a Master/Slave Cluster ... 37
3.5. Shared File System Broker Configuration .. 41
3.6. Client URL for a Shared File System Master/Slave Group .. 41
3.7. JDBC Master/Slave Broker Configuration .. 46
3.8. Client URL for a Shared JDBC Master/Slave Group .. 47
4.1. Network Connector to a Master/Slave Group .. 50

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.08

Chapter 1. Introduction
Fault tolerant message systems can recover from failures with little or no interruption of functionality. Fuse MQ
Enterprise does this by making it easy to configure clients to fail over to new brokers in the event of a broker
failure. It also makes it easy to set up master/slave groups that allow brokers to take over for each other and
maintain the integrity of persistent messages and transactions.

Overview If planned for, disaster scenarios that result in the loss of a message broker
need not obstruct message delivery. Making a messaging system fault tolerant
involves:

• deploying multiple brokers into a topology that allows one broker to pick
up the duties of a failed broker

• configuring clients to fail over to a new broker in the event that its current
broker fails

Fuse MQ Enterprise provides mechanisms that make building fault tolerant
messaging systems easy.

Failover protocol The failover protocol allows you to configure a client with a list of brokers to
which it can connect. When one broker fails, a clients using the failover
protocol will automatically reconnect to a new broker from its list. As long as
one of the brokers on the list is running, the client can continue to function
uninterrupted.

When combined with brokers deployed in a master/slave topology, the failover
protocol is a key part of a fault-tolerant messaging system. The clients will
automatically fail over to the slave broker if the master fails. The clients will
remain functional and continue working as if nothing had happened.

For more information, see "Failover Protocol" on page 12.

Master/Slave topologies A master/slave topology includes a master broker and one or more slave
brokers. All of the brokers share data by using either a store and forward
mechanism or by using a shared data store. When the master broker fails,
one of the slave brokers takes over and becomes the new master broker.
Client applications can reconnect to the new master broker and resume
processing as normal.

For details, see "Master/Slave" on page 31.

9Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.010

Chapter 2. Client Failover
Fuse MQ Enterprise provides two simple mechanisms for clients to failover to an alternate broker if the current
connection fails. The failover protocol relies on either a hard coded list of brokers or a broker participating in a
network of brokers to provide the list of alternate brokers. The discovery protocol relies on discovery agents to
provide a list of alternative brokers.

Failover Protocol .. 12
Static Failover ... 13
Dynamic Failover ... 15

Discovery Protocol ... 19
Discovery Agents ... 20

Fuse Fabric Discovery Agent ... 22
Static Discovery Agent .. 23
Multicast Discovery Agent .. 24
Zeroconf Discovery Agent ... 26

Dynamic Discovery Protocol ... 28

11Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Failover Protocol
Static Failover ... 13
Dynamic Failover ... 15

The failover protocol facilitates quick recovery from network failures. When
a recoverable network error occurs the protocol catches the error and
automatically attempts to reestablish the JMS connection to an alternate
broker endpoint without the need to recreate all of the JMS objects associated
with the JMS connection. The failover URI is composed of one or more URIs
that represent different broker endpoints. By default, the protocol randomly
chooses a URI from the list and attempts to establish a network connection
to it. If it does not succeed, or if it subsequently fails, a new network
connection is established to one of the other URIs in the list.

For true high-availability and fail over capabilities, you will need to set up
your brokers in a network of brokers. See Using Networks of Brokers.

You can set up failover in one of the following ways:

• Static—the client is configured with a static list of available URIs

• Dynamic—the brokers push information about the available broker
connections

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.012

Chapter 2. Client Failover

http://fusesource.com/docs/mq/7.0/networks/networks.pdf#FMQNetworks

Static Failover

Overview In static failover a client is configured to use a failover IRU that lists the URIs
of the broker connections the client can use. When establishing a connection,
the client randomly chooses a URI from the list and attempts to establish a
connection to it. If the connection does not succeed, the client chooses a new
URI from the list and tries again. The client will continue cycling through the
list until a connection attempt succeeds.

If a client's connection to a broker fails after it has been established, the client
will attempt to reconnect to a different broker in the list. Once a connection
to a new broker is established, the client will continue to use the new broker
until the connection to the new broker is severed.

Failover URI A failover URI is a composite URI that uses one of the following syntaxes:

• failover://uri1,...,uriN

• failover://(uri1,...,uriN)?TransportOptions

The URI list(uri1,...,uriN) is a comma-separated list containing the list of
broker endpoint URIs to which the client can connect. The transport
options(?TransportOptions) specified in the form of a query list, allow you
to configure some of the failoiver behaviors.

Transport options The failover protocol supports the transport options described in
Table 2.1 on page 13.

Table 2.1. Failover Transport Options

DescriptionDefaultOption

Specifies the number of milliseconds to wait before the first reconnect
attempt.

10initialReconnectDelay

Specifies the maximum amount of time, in milliseconds, to wait
between reconnect attempts.

30000maxReconnectDelay

Specifies whether to use an exponential back-off between reconnect
attempts.

trueuseExponentialBackOff

Specifies the exponent used in the exponential back-off algorithm.2backOffMultiplier

13Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Static Failover

DescriptionDefaultOption

Specifies the maximum number of reconnect attempts before an
error is returned to the client. -1 specifies unlimited attempts. 0

-1maxReconnectAttempts

specifies that an initial connection attempt is made at start-up, but
no attempts to failover over to a secondary broker will be made.

Specifies the maximum number of reconnect attempts before an
error is returned to the client on the first attempt by the client to
start a connection. 0 specifies unlimited attempts.

0startupMaxReconnectAttempts

Specifies if a URI is chosen at random from the list. Otherwise, the
list is traversed from left to right.

truerandomize

Specifies if the protocol initializes and holds a second transport
connection to enable fast failover.

falsebackup

Specifies the amount of time, in milliseconds, to wait before sending
an error if a new connection is not established. -1 specifies an infinite
timeout value.

-1timeout

Specifies if the protocol keeps a cache of in-flight messages that are
flushed to a broker on reconnect.

falsetrackMessages

Specifies the size, in bytes, used for the cache used to track
messages.

131072maxCacheSize

Specifies whether the client accepts updates to its list of known URIs
from the connected broker. Setting this to false inhibits the client's
ability to use dynamic failover. See "Dynamic Failover" on page 15.

trueupdateURIsSupported

Example Example 2.1 on page 14 shows a failover URI that can connect to one of
two message brokers.

Example 2.1. Simple Failover URI

failover://(tcp://localhost:61616,tcp://remotehost:61616)?initialReconnectDelay=100

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.014

Chapter 2. Client Failover

Dynamic Failover

Overview Dynamic failover combines the failover protocol and a network of brokers to
allow a broker to supply its clients with a list of broker connections to which
the clients can failover. Clients use a failover URI to connect to a broker and
the broker dynamically updates the clients' list of available URIs. The broker
updates its clients' failover lists with the URIs of the other brokers in its
network of brokers that are currently running. As new brokers join, or exit,
the cluster, the broker will adjust its clients' failover lists.

From a connectivity point of view, dynamic failover works the same as static
failover. A client randomly chooses a URI from the list provided in its failover
URI. Once that connection is established, the list of available brokers is
updated. If the original connection fails, the client will randomly select a new
URI from its dynamically generated list of brokers. If the new broker is
configured for dynamic failover, the new broker will update the client's list.

Set-up To use dynamic failover you must configure both the clients and brokers used
by your application. The following must be configured:

• The client's must be configured to use the failover protocol when connecting
with its broker.

• The brokers must be configured to form a network of brokers.

See Using Networks of Brokers.

• The broker's transport connector must set the failover properties needed to
update its consumers.

Client-side configuration The client-side configuration for using dynamic failover is identical to the
client-side configuration for using static failover. The client uses a failover
URI to connect to a broker.

When using dynamic failover, the failover URI can include a single broker
URI. As long as the broker is available when the client attempts to make its
initial connection, the client's list of failover brokers will get populated.

It is also important that the updateURIsSupported option not be set to
false. If it is, the client will not be able to receive updates about what brokers
are available for failover.

15Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Dynamic Failover

http://fusesource.com/docs/mq/7.0/networks/networks.pdf#FMQNetworks

See "Failover URI" on page 13 and "Transport options" on page 13 for more
information about using failover URIs.

Broker-side configuration Important
Brokers should never use a failover uri to configure a transport
connector. The failover protocol does not support listening for
incoming messages.

Configuring a broker to participate in dynamic failover requires two things:

• The broker must be configured to participate in a network of brokers that
can be available for failovers.

See Using Networks of Brokers for information about setting up a network
of brokers.

• The broker's transport connector must set the failover properties needed to
update its consumers.

Table 2.2 on page 16 describes the broker-side properties that can be used
to configure a failover cluster. These properties are attributes on the broker's
transportConnector element.

Table 2.2. Broker-side Failover Properties

DescriptionDefaultProperty

Specifies if the broker passes information to connected clients about
changes in the topology of the broker cluster.

falseupdateClusterClients

Specifies if clients are updated when a broker is removed from the
cluster.

falseupdateClusterClientsOnRemove

Specifies if connected clients are asked to rebalance across the
cluster whenever a new broker joins.

falserebalanceClusterClients

Specifies a comma-separated list of regular expression filters, which
match against broker names to select the brokers that belong to the
failover cluster.

updateClusterFilter

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.016

Chapter 2. Client Failover

http://fusesource.com/docs/mq/7.0/networks/networks.pdf#FMQNetworks

DescriptionDefaultProperty

Specifies a URL, or path to a local file, locating a text file that
contains a comma-separated list of URIs to use for reconnect in the
case of failure.

updateURIsURL

Example Example 2.2 on page 17 shows the configuration for a broker that participates
in dynamic failover.

Example 2.2. Broker for Dynamic Failover

<beans ... >
<broker>
...
<networkConnectors>

❶ <networkConnector uri="multicast://default" />
</networkConnectors>
...
<transportConnectors>
<transportConnector name="openwire"

uri="tcp://0.0.0.0:61616"
❷ discoveryUri="multicast://default"
❸ updateClusterClients="true"
❹ updateClusterFilter="*A*,*B*" />

</transportConnectors>
...

</broker>
</beans>

The configuration in Example 2.2 on page 17 does the following:

❶ Creates a network connector that connects to any discoverable broker
that uses the multicast transport.

❷ Makes the broker discoverable by other brokers over the multicast
protocol.

❸ Makes the broker update the list of available brokers for clients that
connect using the failover protocol.

Note
Clients will only be updated when new brokers join the cluster,
not when a broker leaves the cluster.

17Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Dynamic Failover

❹ Creates a filter so that only those brokers whose names start with the
letter A or the letter B are considered to belong to the failover cluster.

Example 2.3 on page 18 shows the URI for a client that uses the failover
protocol to connect to the broker and its cluster.

Example 2.3. Failover URI for Connecting to a Failover Cluster

failover://(tcp://0.0.0.0:61616)?initialReconnectDelay=100

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.018

Chapter 2. Client Failover

Discovery Protocol
Discovery Agents ... 20

Fuse Fabric Discovery Agent ... 22
Static Discovery Agent .. 23
Multicast Discovery Agent .. 24
Zeroconf Discovery Agent ... 26

Dynamic Discovery Protocol ... 28

Dynamic failover provides a lot of control over how a client generates its list
of available brokers, but it has weaknesses. It requires that you know the
address of the initial broker and that the initial broker is active when the client
starts up. It also requires that all of the brokers being used for failover are
configured in a network of brokers.

Fuse MQ Enterprise's discovery protocol offers an alternative method for
dynamically generating a list of brokers that are available for client failover.
The protocol feature allows brokers to advertise their availability and for clients
to dynamically discover them. This is accomplished using two pieces:

• discovery agents—components that advertise the list of available brokers

• discovery URI—a URI that looks up all of the discoverable brokers and
presents them as a list of actual URIs for use by the client or network
connector

19Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Discovery Protocol

Discovery Agents
Fuse Fabric Discovery Agent ... 22
Static Discovery Agent .. 23
Multicast Discovery Agent .. 24
Zeroconf Discovery Agent ... 26

A discovery agent is a mechanism that advertises available brokers to clients
and other brokers. When a client, or broker, using a discovery URI starts up
it will look for any brokers that are available using the specified discovery
agent. The clients will update their lists periodically using the same
mechanism.

How a discover agent learns about the available brokers varies between agents.
Some agents use a static list, some use a third party registry, and some rely
on the brokers to provide the information. For discovery agents that rely on
the brokers for information, it is necessary to enable the discovery agent in
the message broker configuration. For example, to enable the multicast
discovery agent on an Openwire endpoint, you edit the relevant
transportConnector element as shown in Example 2.4 on page 20.

Example 2.4. Enabling a Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

</transportConnectors>

Where the discoveryUri attribute on the transportConnector element
is initialized to multicast://default.

Tip
If a broker uses multiple transport connectors, you need to configure
each transport connector to use a discovery agent individually. This
means that different connectors can use different discovery
mechanisms or that one or more of the connectors can be
indiscoverable.

Fuse MQ Enterprise currently supports the following discovery agents:

• Fuse Fabric Discovery Agent

• Static Discovery Agent

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.020

Chapter 2. Client Failover

• Multicast Discovery Agent

• Zeroconf Discovery Agent

21Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Discovery Agents

Fuse Fabric Discovery Agent

Overview The Fuse Fabric discovery agent uses Fuse Fabric to discover the brokers in
a specified fabric. The discovery agent requires that all of the discoverable
brokers be deployed into a single fabric. When the client attempts to connect
to a broker the agent looks up all of the available brokers in the fabric's
registry.

For more information on Fuse Fabric see ????.

URI The Fuse Fabric discovery agent URI conforms to the syntax in
Example 2.5 on page 22.

Example 2.5. Fuse Fabric Discovery Agent URI Format

fabric://FabricID

Where FabricID is the ID of the fabric from which the client discovers the
available brokers.

Configuring a broker The Fuse Fabric discovery agent requires that the discoverable brokers are
deployed into a single fabric.

The best way to deploy brokers into a fabric is using Fuse Management
Console. For information on using Fuse Management Console see Fuse
Management Console Documentation1.

You can also use the console to deploy brokers into a fabric. See ????.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a Fuse Fabric agent URI as shown in
Example 2.6 on page 22.

Example 2.6. Client Connection URL using Fuse Fabric Discovery

discovery://(fabric://nwBrokers)

A client using the URL in Example 2.6 on page 22 will discover all the brokers
in the nwBrokers fabric and generate a list of brokers to which it can connect.

1 http://fusesource.com/docs/fmc

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.022

Chapter 2. Client Failover

http://fusesource.com/docs/fmc
http://fusesource.com/docs/fmc
http://fusesource.com/docs/fmc

Static Discovery Agent

Overview The static discovery agent does not truly discover the available brokers. It
uses an explicit list of broker URLs to specify the available brokers. Brokers
are not involved with the static discovery agent. The client only knows about
the brokers that are hard coded into the agent's URI.

Using the agent The static discovery agent is a client-side only agent. It does not require any
configuration on the brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using
a discovery protocol that uses a static agent URI.

The static discovery agent URI conforms to the syntax in
Example 2.7 on page 23.

Example 2.7. Static Discovery Agent URI Format

static://(URI1,URI2,URI3,...)

Example Example 2.8 on page 23 shows a URL that configures a client to use the
dynamic discovery protocol to connect to one member of a broker pair.

Example 2.8. Discovery URL using the Static Discovery Agent

discovery://(static://(tcp://localhost:61716,tcp://local
host:61816))

23Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Discovery Agents

Multicast Discovery Agent

Overview The multicast discovery agent uses the IP multicast protocol to find any
message brokers currently active on the local network. The agent requires
that each broker you want to advertise is configured to use the multicast
agent to publish its details to a multicast group. Clients using the multicast
agent as part of the discovery URI they use for connecting to a broker will
use the agent to receive the list of available brokers advertising in the specified
multicast group.

Important
Your local network (LAN) must be configured appropriately for the
IP/multicast protocol to work.

URI The multicast discovery agent URI conforms to the syntax in
Example 2.9 on page 24.

Example 2.9. Multicast Discovery Agent URI Format

multicast://GroupID

Where GroupID is an alphanumeric identifier. All participants in the same
discovery network must use the same GroupID.

Configuring a broker For a broker to be discoverable using the multicast discovery agent, you must
enable the discovery agent in the broker's configuration. To enable the
multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.10 on page 24.

Example 2.10. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

</transportConnectors>

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.024

Chapter 2. Client Failover

The broker configured in Example 2.10 on page 24 is discoverable as part
of the multicast group default.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a multicast agent URI as shown in
Example 2.11 on page 25.

Example 2.11. Client Connection URL using Multicast Discovery

discovery://(multicast://default)

A client using the URL in Example 2.11 on page 25 will discover all the
brokers advertised in the default multicast group and generate a list of
brokers to which it can connect.

25Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Discovery Agents

Zeroconf Discovery Agent

Overview The zeroconf discovery agent is derived from Apple’s Bonjour Networking2

technology, which defines the zeroconf protocol as a mechanism for
discovering services on a network. Fuse MQ Enterprise bases its
implementation of the zeroconf discovery agent on JmDSN3, which is a service
discovery protocol that is layered over IP/multicast and is compatible with
Apple Bonjour.

The agent requires that each broker you want to advertise is configured to
use a multicast discovery agent to publish its details to a multicast group.
Clients using the zeroconf agent as part of the discovery URI they use for
connecting to a broker will use the agent to receive the list of available brokers
advertising in the specified multicast group.

Important
Your local network (LAN) must be configured to use IP/multicast for
the zeroconf agent to work.

URI The zeroconf discovery agent URI conforms to the syntax in
Example 2.12 on page 26.

Example 2.12. Zeroconf Discovery Agent URI Format

zeroconf://GroupID

Where the GroupID is an alphanumeric identifier. All participants in the same
discovery network must use the same GroupID.

Configuring a broker For a broker to be discoverable using the zeroconf discovery agent, you must
enable a multicast discovery agent in the broker's configuration. To enable
the multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.13 on page 27.

2 http://developer.apple.com/networking/bonjour/
3 http://sourceforge.net/projects/jmdns/

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.026

Chapter 2. Client Failover

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/
http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Example 2.13. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://NEGroup" />

</transportConnectors>

The broker configured in Example 2.13 on page 27 is discoverable as part
of the multicast group NEGroup.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a zeroconf agent URI as shown in
Example 2.14 on page 27.

Example 2.14. Client Connection URL using Zeroconf Discovery

discovery://(zeroconf://NEGroup)

A client using the URL in Example 2.14 on page 27 will discover all the
brokers advertised in the NEGroup multicast group and generate a list of
brokers to which it can connect.

27Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Discovery Agents

Dynamic Discovery Protocol

Overview The dynamic discovery protocol combines reconnect logic with a discovery
agent to dynamically create a list of brokers to which the client can connect.
The discovery protocol invokes a discovery agent in order to build up a list of
broker URIs. The protocol then randomly chooses a URI from the list and
attempts to establish a connection to it. If it does not succeed, or if the
connection subsequently fails, a new connection is established to one of the
other URIs in the list.

URI syntax Example 2.15 on page 28 shows the syntax for a discovery URI.

Example 2.15. Dynamic Discovery URI

discovery://(DiscoveryAgentUri)?Options

DiscoveryAgentUri is URI for the discovery agent used to build up the list
of available brokers. Discovery agents are described in "Discovery Agents"
on page 20.

The options, ?Options, are specified in the form of a query list. The discovery
options are described in Table 2.3 on page 28. You can also inject transport
options as described in "Setting options on the discovered transports"
on page 29.

Tip
If no options are required, you can drop the parentheses from the
URI. The resulting URI would take the form
discovery://DiscoveryAgentUri

Transport options The discovery protocol supports the options described in
Table 2.3 on page 28.

Table 2.3. Dynamic Discovery Protocol Options

DescriptionDefaultOption

Specifies, in milliseconds, how long to wait before the first reconnect
attempt.

10initialReconnectDelay

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.028

Chapter 2. Client Failover

DescriptionDefaultOption

Specifies, in milliseconds, the maximum amount of time to wait between
reconnect attempts.

30000maxReconnectDelay

Specifies if an exponential back-off is used between reconnect attempts.trueuseExponentialBackOff

Specifies the exponent used in the exponential back-off algorithm.2backOffMultiplier

Specifies the maximum number of reconnect attempts before an error is
sent back to the client. 0 specifies unlimited attempts.

0maxReconnectAttempts

Sample URI Example 2.16 on page 29 shows a discovery URI that uses a multicast
discovery agent.

Example 2.16. Discovery Protocol URI

discovery://(multicast://default)?initialReconnectDelay=100

Setting options on the discovered
transports

The list of transport options, Options, in the discovery URI can also be used
to set options on the discovered transports. If you set an option not listed in
"Setting options on the discovered transports" on page 29, the URI parser
attempts to inject the option setting into every one of the discovered endpoints.

Example 2.17 on page 29 shows a discovery URI that sets the TCP
connectionTimeout option to 10 seconds.

Example 2.17. Injecting Transport Options into a Discovered Transport

discovery://(multicast://default)?connectionTimeout=10000

The 10 second timeout setting is injected into every discovered TCP endpoint.

29Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Dynamic Discovery Protocol

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.030

Chapter 3. Master/Slave
Persistent messages require an additional layer of fault tolerance. In case of a broker failure, persistent messages
require that the replacement broker has a copy of all the undelivered messages. Master/slave groups address
this requirement by having a standby broker that either mirrors the active broker's persistence store or shares
the active broker's data store.

Shared Nothing Master/Slave .. 32
Shared File System Master/Slave ... 38
Shared JDBC Master/Slave ... 43

A master/slave group consists of two or more brokers where one master broker
is active and one or more slave brokers are on hot standby, ready to take over
whenever the master fails or shuts down. All of the brokers store the message
and event data processed by the master broker. So, when one of the slaves
takes over as the new master broker the integrity of the messaging system is
guaranteed.

Fuse MQ Enterprise supports three master/slave broker configurations:

• Shared nothing—the master forwards a copy of every persistent message
it receives to a single slave broker

• Shared file system—the master and the slaves use a common persistence
store that is located on a shared file system

• Shared JDBC database—the masters and the slaves use a common JDBC
persistence store

31Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared Nothing Master/Slave

Overview A shared nothing master/slave group replicates data between a pair of brokers
using a dedicated connection. The advantage of this approach is that it does
not require a shared database or a shared file system and thus does not have
a single point of failure.

The disadvantage of this approach are:

• Reintroducing a failed master requires manually synchronizing the
persistence stores and restarting the entire cluster.

• Persistent messaging suffers additional latency because producers must
wait for messages to be replicated to the slave and be stored in the slave's
persistent store

Initial state Figure 3.1 on page 32 shows the initial state of a shared nothing master/slave
group.

Figure 3.1. Shared Nothing Master/Slave Group Initial State

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.032

Chapter 3. Master/Slave

In this topology, the master broker does not require any special configuration.
Unless specifically configured to wait for a slave, the master broker functions
like an ordinary broker until a slave broker connects to it. Once a slave
connects to the master broker, the master broker forwards all events to the
slave. It will not respond to a client request until the associated event has
been successfully forwarded.

The slave broker is configured with a master connector, which connects to
the master broker in order to duplicate the data stored in the master. While
the connection is active, the slave consumes all events from the master:
including messages, acknowledgments, and transactional states. The slave
does not start any transport connectors or network connectors. Its sole purpose
is to duplicate the state of the master.

State after failure of the master When the master fails, the slave can be configured to behave in one of two
ways:

• take over—the slave starts up all of its transport connectors and network
connectors and takes the place of the master broker. Clients that are
configured to fail over experience no down time.

• close down—the slave stays unreachable and the client connections are
shutdown until the master is reintroduced. The slave's data store is used
as a back-up for the master in the case of a catastrophic hardware failure.

Figure 3.2 on page 34 shows the state of the master/slave group after the
master broker has failed and the slave broker has taken over from the master.

33Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared Nothing Master/Slave

Figure 3.2. Shared Nothing Master/Slave Group after Master Failure

Configuring the master In a shared nothing master/slave group the master broker does not require
any special configuration. When a slave broker opens a master connector to
a broker, the broker is automatically turned into a master.

There are optional attributes you can set on the master's broker element
that controls how the master behaves in relation to a slave broker.
Table 3.1 on page 34 describes these attributes.

Table 3.1. Configuration Options for a Master in a Shared Nothing Master/Slave Group

DescriptionDefaultAttribute

Specifies if the master will wait for a slave to connect before it will accept
client connections.

falsewaitForSlave

Specifies if the master will stop processing client requests if it loses the
connection to the slave broker.

falseshutdownOnSlaveFailure

Example 3.1 on page 35 shows a sample configuration for a master broker
in a shared nothing master/slave group.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.034

Chapter 3. Master/Slave

Example 3.1. Master Configuration for Shared Nothing Master/Slave Group

<broker brokerName="master"
waitForSlave="true"
shutdownOnSlaveFailure="false"
xmlns="http://activemq.apache.org/schema/core">

...
<transportConnectors>

<transportConnector uri="tcp://masterhost:61616"/>
</transportConnectors>
...

</broker>

Important
You should not configure a network connector between the master
and its slave. If you configure a network connector, you may
encounter race conditions when the master broker is under heavy
load.

Configuring the slave When using shared nothing master/slave there are two approaches to
configuring the slave:

• Configure the master connector as a broker service.

In this approach you configure the master connector by adding a
masterConnector child to the broker's services element.

The advantage of this approach is that it allows you to provide user
credentials to a secure master broker. The disadvantage is that you cannot
configure the slave to shutdown on master failure. It will always takeover
the master role.

The masterConnector element has three attributes, described in
Table 3.2 on page 35, that are used to configure the connector.

Table 3.2. Attributes for Configuring the Master Connector Service

DescriptionAttribute

Specifies the master's transport connector that will be used
by the master connector.

remoteURI

Specifies the user name used to connect to the master.userName

35Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared Nothing Master/Slave

DescriptionAttribute

Specifies the password used to connect to the master.password

Example 3.2 on page 36 shows how to configure the slave using the
masterConnector element.

Example 3.2. Configuring the Master Connector as a Service

<broker brokerName="slave"
xmlns="http://activemq.apache.org/schema/core">

...
<services>
<masterConnector
remoteURI="tcp://localhost:62001"
userName="James"
password="Cheese" />

</services>

<transportConnectors>
<transportConnector uri="tcp://slavehost:61616"/>

</transportConnectors>
...

</broker>

• Configure the master connector directly on the broker.

In this approach you configure the master connector by setting the attributes
described in Table 3.3 on page 36 directly on the broker element.

Table 3.3. Attributes for Configuring a Master Connector on the Broker

DescriptionAttribute

Specifies the master's transport connector
that will be used by the master connector.

masterConnectorURI

Specifies if the slave shuts down when it
loses the connection to the master.

shutdownOnMasterFailure

The advantage of this approach is that you can configure the slave to simply
serve as a back-up for the master broker and shut down when the master
shuts down. The disadvantage is that you cannot connect to masters that
require authentication.

Example 3.3 on page 37 shows how to configure the master connector
by setting attributes on the broker element.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.036

Chapter 3. Master/Slave

Example 3.3. Configuring the Master Connector Directly

<broker brokerName="slave"
masterConnectorURI="tcp://masterhost:62001"
shutdownOnMasterFailure="false"
xmlns="http://activemq.apache.org/schema/core">

...
<transportConnectors>

<transportConnector uri="tcp://slavehost:61616"/>
</transportConnectors>
...

</broker>

Configuring the clients Assuming that you choose the mode of operation where the slave takes over
from the master, your clients will need to include logic for failing over to the
new master. Adding the fail over logic requires that the clients use the
masterslave protocol. This protocol is an instance of the failover protocol
described in "Failover Protocol" on page 12 that is specifically tailored for
shared noting master/slave pairs.

If you had a two broker cluster where the master is configured to accept client
connections on tcp://masterhost:61616 and the slave is configured accept
client connections on tcp://slavehost:61616, you would use the
masterslave URI shown in Example 3.4 on page 37 for your clients.

Example 3.4. URI for Connecting to a Master/Slave Cluster

masterslave://(tcp://masterhost:61616,tcp://slavehost:61616)

Reintroducing the master Reintroducing the master broker after a failure is a manual process. Perform
the following steps:

1. Shut down the slave.

2. Copy the slave's data directory over to the master's data directory.

3. Start the master and the slave.

37Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared Nothing Master/Slave

Shared File System Master/Slave

Overview A shared file system master/slave group works by sharing a common data
store that is located on a shared file system. Brokers automatically configure
themselves to operate in master mode or slave mode based on their ability
to grab an exclusive lock on the underlying data store.

The advantage of this configuration are:

• that a group can consist of more than two members. I group can have an
arbitrary number of slaves.

• that a failed node can rejoin the group without any manual intervention.
When a new node joins, or rejoins, the group it automatically falls into
slave mode until it can get an exclusive lock on the data store.

The disadvantage of this configuration is that the shared file system is a single
point of failure. This disadvantage can be mitigated by using a storage area
network(SAN) with built in high availability(HA) functionality. The SAN will
handle replication and fail over of the data store.

File locking requirements The shared file system requires an efficient and reliable file locking mechanism
to function correctly. Not all SAN file systems are compatible with the shared
file system configuration's needs.

Warning
OCFS2 is incompatible with this master/slave configuration, because
mutex file locking from Java is not supported.

Warning
NFSv3 is incompatible with this master/slave configuration. In the
event of an abnormal termination of a master broker, which is an
NFSv3 client, the NFSv3 server does not time out the lock held by
the client. This renders the Fuse MQ Enterprise data directory
inaccessible. Because of this, the slave broker cannot acquire the
lock and therefore cannot start up. In this case, the only way to
unblock the master/slave in NFSv3 is to reboot all broker instances.

On the other hand, NFSv4 is compatible with this master/slave configuration,
because its design includes timeouts for locks. When an NFSv4 client holding

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.038

Chapter 3. Master/Slave

a lock terminates abnormally, the lock is automatically released after 30
seconds, allowing another NFSv4 client to grab the lock.

Initial state Figure 3.3 on page 39 shows the initial state of a shared file system
master/slave group. When all of the brokers are started, one of them grabs
the exclusive lock on the broker data store and becomes the master. All of
the other brokers remain slaves and pause while waiting for the exclusive
lock to be freed up. Only the master starts its transport connectors, so all of
the clients connect to it.

Figure 3.3. Shared File System Initial State

State after failure of the master Figure 3.4 on page 40 shows the state of the master/slave group after the
original master has shut down or failed. As soon as the master gives up the
lock (or after a suitable timeout, if the master crashes), the lock on the data
store frees up and another broker grabs the lock and gets promoted to master.

39Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared File System Master/Slave

Figure 3.4. Shared File System after Master Failure

After the clients lose their connection to the original master, they automatically
try all of the other brokers listed in the failover URL. This enables them to
find and connect to the new master.

Configuring the brokers In the shared file system master/slave configuration, there is nothing special
to distinguish a master broker from the slave brokers. The membership of a
particular master/slave group is defined by the fact that all of the brokers in
the group use the same persistence layer and store their data in the same
shared directory.

Example 3.5 on page 41 shows the broker configuration for a shared file
system master/slave group that shares a data store located at
/sharedFileSystem/sharedBrokerData and uses the KahaDB persistence
store.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.040

Chapter 3. Master/Slave

Example 3.5. Shared File System Broker Configuration

<broker ... >
...
<persistenceAdapter>
<kahaDB directory="/sharedFileSystem/sharedBrokerData"/>

</persistenceAdapter>
...

</broker>

All of the brokers in the group must share the same persistenceAdapter
element.

Configuring the clients Clients of shared file system master/slave group must be configured with a
failover URL that lists the URLs for all of the brokers in the group.
Example 3.6 on page 41 shows the client failover URL for a group that
consists of three brokers: broker1, broker2, and broker3.

Example 3.6. Client URL for a Shared File System Master/Slave Group

fail
over:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

For more information about using the failover protocol see "Static Failover"
on page 13.

Reintroducing a failed node You can restart the failed master at any time and it will rejoin the cluster. It
will rejoin as a slave broker because one of the other brokers already owns
the exclusive lock on the data store, as shown in Figure 3.5 on page 42.

41Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared File System Master/Slave

Figure 3.5. Shared File System after Master Restart

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.042

Chapter 3. Master/Slave

Shared JDBC Master/Slave

Overview A shared JDBC master/slave group works by sharing a common database
using the JDBC persistence adapter. Brokers automatically configure
themselves to operate in master mode or slave mode, depending on whether
or not they manage to grab a mutex lock on the underlying database table.

The advantage of this configuration are:

• that a group can consist of more than two members. I group can have an
arbitrary number of slaves.

• that a failed node can rejoin the group without any manual intervention.
When a new node joins, or rejoins, the group it automatically falls into
slave mode until it can get a mutex lock on the database table.

The disadvantages of this configuration are:

• The shared database is a single point of failure. This disadvantage can be
mitigated by using a database with built in high availability(HA)
functionality. The database will handle replication and fail over of the data
store.

• You cannot enable high speed journaling. This has a significant impact on
performance.

Initial state Figure 3.6 on page 44 shows the initial state of a JDBC master/slave group.
When all of the brokers are started, one of them grabs the mutex lock on the
database table and becomes the master. All of the other brokers become
slaves and pause while waiting for the lock to be freed up. Only the master
starts its transport connectors, so all of the clients connect to it.

43Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared JDBC Master/Slave

Figure 3.6. JDBC Master/Slave Initial State

After failure of the master Figure 3.7 on page 45 shows the state of the group after the original master
has shut down or failed. As soon as the master gives up the lock (or after a
suitable timeout, if the master crashes), the lock on the database table frees
up and another broker grabs the lock and gets promoted to master.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.044

Chapter 3. Master/Slave

Figure 3.7. JDBC Master/Slave after Master Failure

After the clients lose their connection to the original master, they automatically
try all of the other brokers listed in the failover URL. This enables them to
find and connect to the new master.

Configuring the brokers In a JDBC master/slave configuration, there is nothing special to distinguish
a master broker from the slave brokers. The membership of a particular
master/slave group is defined by the fact that all of the brokers in the cluster
use the same JDBC persistence layer and store their data in the same database
tables.

Example 3.7 on page 46 shows the configuration used be a master/slave
group that stores the shared broker data in an Oracle database.

45Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared JDBC Master/Slave

Example 3.7. JDBC Master/Slave Broker Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core-5.3.1.xsd">

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="brokerA">

...
<persistenceAdapter>

<jdbcPersistenceAdapter dataSource="#oracle-ds"/>
</persistenceAdapter>
...

</broker>

<bean id="oracle-ds"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>
<property name="poolPreparedStatements" value="true"/>

</bean>

</beans>

Important
The persistence adapter is configured as a direct JDBC persistence
layer, using the jdbcPersistenceAdapter element. You must not
use the journaled persistence adapter, which is configured using the
journalPersistenceAdapter element, in this scenario.

Configuring the clients Clients of shared JDBC master/slave group must be configured with a failover
URL that lists the URLs for all of the brokers in the group.
Example 3.8 on page 47 shows the client failover URL for a group that
consists of three brokers: broker1, broker2, and broker3.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.046

Chapter 3. Master/Slave

Example 3.8. Client URL for a Shared JDBC Master/Slave Group

fail
over:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

For more information about using the failover protocol see "Static Failover"
on page 13.

Reintroducing a failed node You can restart the failed node at any time and it will rejoin the group. It will
rejoin the group as a slave because one of the other brokers already owns the
mutex lock on the database table, as shown in Figure 3.8 on page 47.

Figure 3.8. JDBC Master/Slave after Master Restart

47Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Shared JDBC Master/Slave

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.048

Chapter 4. Master/Slave and Broker
Networks
Master/slave groups and networks of brokers are very different things. Master/slave groups can be used in a
network of brokers to provide fault tolerance to the nodes in the broker network. This requires careful consideration
and the use of a special network connection protocol.

Overview Master/slave groups and broker networks represent different levels of
organization. You can include a master/slave group as a node in a network
of brokers. Using the basic principles of making a master/slave group a node
in a broker network, you can scale up to an entire network consisting of
master/slave groups.

When combining master/slave groups with broker networks there are two
things to remember:

• Network connectors to a master/slave group use a special protocol.

• A broker cannot open a network connection to another member of its
master/slave group.

Configuring the connection to a
master/slave group

The network connection to a master/slave group needs to do two things:

• Open a connection to the master broker without connecting to the slave
brokers.

• Connect to the new master in the case of a failure.

The network connector's reconnect logic will handle the reconnection to the
new master in the case of a network failure. The network connector's
connection logic, however, attempts to establish connections to all of the
specified brokers. To get around the network connector's default behavior,
you use a masterslave URI to specify the list of broker's in the master/slave
group. The masterslave URI only allows the connector to connect to one of
brokers in the list which will be the master.

The masterslave protocol's URI is a list of the connections points for each
broker in the master/slave group. The network connector will traverse the list
in order until it establishes a connection.

49Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

Example 4.1 on page 50 shows a network connector configured to link to a
master/slave group.

Example 4.1. Network Connector to a Master/Slave Group

<networkConnectors>
<networkConnector name="linkToCluster"

uri="mastersalve:(tcp://masterHost:61002,tcp://slaveHost:61002)"
... />

</networkConnectors>

Host pair with master/slave
groups

In order to scale up to a large fault tolerant broker network, it is a good idea
to adopt a simple building block as the basis for the network. An effective
building block for this purpose is the host pair arrangement shown in
Figure 4.1 on page 50.

Figure 4.1. Master/Slave Groups on Two Host Machines

The host pair arrangement consists of two master/slave groups distributed
between two host machines. Under normal operating conditions, one master
broker is active on each of the two host machines. If one of the machines
should fail for some reason, the slave on the other machine takes over, so
that you end up with two active brokers on the healthy machine.

When configuring the network connectors, you must remember not to open
any connectors to brokers in the same group. For example, the network

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.050

Chapter 4. Master/Slave and Broker Networks

connector for brokerB1 should be configured to connect to at most brokerA1
and brokerA2.

Network of multiple host pairs You can easily scale up to a large fault tolerant broker network by adding host
pairs, as shown in Figure 4.2 on page 51.

Figure 4.2. Broker Network Consisting of Host Pairs

The preceding network consists of eight master/slave groups distributed over
eight host machines. As before, you should open network connectors only to
brokers outside the current master/slave group. For example, brokerA1 can
connect to at most the following brokers: brokerB*, brokerC*, brokerD*,
brokerE*, brokerF*, brokerG*, and brokerH*.

More information For detailed information on setting up a network of brokers see Using Networks
of Brokers.

51Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

http://fusesource.com/docs/mq/7.0/networks/networks.pdf#FMQNetworks
http://fusesource.com/docs/mq/7.0/networks/networks.pdf#FMQNetworks

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.052

Index
B
broker

masterConnectorURI, 36
shutdownOnMasterFailure, 36
shutdownOnSlaveFailure, 34
waitForSlave, 34

broker networks
master/slave, 49

broker properties
rebalanceClusterClients, 16
updateClusterClients, 16
updateClusterClientsOnRemove, 16
updateClusterFilter, 16
updateURIsURL, 17

D
discovery agent

Fuse Fabric, 22
multicast, 24
static, 23
zeroconf, 26

discovery protocol
backOffMultiplier, 29
initialReconnectDelay, 28
maxReconnectAttempts, 29
maxReconnectDelay, 29
URI, 28
useExponentialBackOff, 29

discovery URI, 28
discovery://, 28
discoveryUri, 24, 26
dynamic failover, 15

broker configuration, 16
client configuration, 15

F
fabric://, 22
failover, 12

backOffMultiplier, 13

backup, 14
broker properties, 16
dynamic, 15
initialReconnectDelay, 13
maxCacheSize, 14
maxReconnectAttempts, 14
maxReconnectDelay, 13
randomize, 14
startupMaxReconnectAttempts, 14
static, 13
timeout, 14
trackMessages, 14
updateURIsSupported, 14
useExponentialBackOff, 13

failover URI, 13
transport options, 13

failover://, 13
Fuse Fabric discovery agent

URI, 22

J
jdbcPersistenceAdapter, 45

M
master broker

reintroduction
shared file system, 41
shared JDBC, 47
shared nothing, 37

shared nothing master/slave, 34
master connector, 32
master/slave

broker networks, 49
network of brokers, 49

masterConnector, 35
password, 36
remoteURI, 35
userName, 35

masterslave, 49
masterslave URI, 37
masterslave://, 37
multicast discovery agent

broker configuration, 24

53Fuse MQ Enterprise Fault Tolerant Messaging Version 7.0

URI, 24
multicast://, 24

N
network of brokers

master/slave, 49
NFSv3, 38
NFSv4, 38

O
OCFS2, 38

P
persistenceAdapter, 40, 45

S
shared file system master/slave

advantages, 38
broker configuration, 40, 45
client configuration, 41
disadvantages, 38
incompatible SANs, 38
initial state, 39
master failure, 39
NFSv3, 38
NFSv4, 38
OCFS2, 38
recovery strategies, 39
reintroducing a node, 41

shared JDBC master/slave
advantages, 43
client configuration, 46
disadvantages, 43
initial state, 43
master failure, 44
recovery strategies, 44
reintroducing a node, 47

shared nothing master/slave
client configuration, 37
initial state, 32
master configuration, 34
master failure, 33

recovery strategies, 33
reintroducing the master, 37
slave configuration, 35

shutdownOnSlaveFailure, 34
slave broker

shared nothing master/slave, 35
static discovery agent

URI, 23
static failover, 13
static://, 23

T
transportConnector

discoveryUri, 24, 26

W
waitForSlave, 34

Z
zeroconf discovery agent

broker configuration, 26
URI, 26

zeroconf://, 26

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.054

	Fault Tolerant Messaging
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Client Failover
	Failover Protocol
	Static Failover
	Dynamic Failover

	Discovery Protocol
	Discovery Agents
	Fuse Fabric Discovery Agent
	Static Discovery Agent
	Multicast Discovery Agent
	Zeroconf Discovery Agent

	Dynamic Discovery Protocol

	Chapter 3. Master/Slave
	Shared Nothing Master/Slave
	Shared File System Master/Slave
	Shared JDBC Master/Slave

	Chapter 4. Master/Slave and Broker Networks
	Index

