
Transactional File
in Java

USER GUIDE

author: Ioannis Ganotis
email: Ioannis.Ganotis@ncl.ac.uk

Newcastle upon Tyne,
JBoss, a division of Red Hat

mailto:Ioannis.Ganotis@ncl.ac.uk

Ioannis Ganotis 044543297

Index
1 Introduction...3

1.1 About this Guide..3
1.2 Acknowledgements...3
1.3 Prerequisites..3
1.4 Documentation..3

2 Transactional File in Java..4
2.1 Brief Description...4
2.2 How to Build and Install..4
2.3 Running the Demo...5

3 Available API and Examples..6
3.1 Part I: Manage Contents of a File Transactionally..6

3.1.1 Create / Open a File...6
3.1.2 Invoke File Operations (Transaction Support: Disabled)......................................7
3.1.3 Invoke File Operations (Transaction Support: Enabled).......................................7
3.1.4 Multiple Concurrent Transactions...9
3.1.5 Multiple VMs - Concurrent Transactions..10
3.1.6 Close the File...10

3.2 Part II: Manage Contents of a Directory Transactionally...11
3.2.1 Create / Open a Directory..11
3.2.2 Invoke Operations on Directory's Files...12
3.2.3 Multiple Concurrent Transactions...13
3.2.4 Close the Directory..14

3.3 Failure Recovery...14
4 API Overview..15

4.1 Part I: Transactional File Methods..15
4.2 Part II: Transactional Directory Methods..18

4.2.1 XADir class...18
4.2.2 XADirFile class...18

2

Ioannis Ganotis 044543297

1 Introduction

1.1 About this Guide
This Guide describes a library that can be used to support transactions in File I/O in Java. It
provides information on how an application programmer can use the classes included in the
library to benefit from transactional support when applying operations on the contents of
files or directories. It also describes how the operations can be called in a distributed
environment (e.g. different Virtual Machines) without violating any of the ACID (Atomicity,
Consistency, Isolation, Durability) properties.

1.2 Acknowledgements
Jonathan Halliday (jonathan.halliday@redhat.com) has contributed providing truly inspiring
dedication, guidance and knowledge to the development of the “Transactional File in Java”
project.

1.3 Prerequisites
This Guide assumes familiarity with Object-Oriented (OO) programming (preferably Java),
basic knowledge on Transactions (Transaction Managers) and a basic understanding of
multi-threaded applications. A general understanding of UNIX operating system will be also
useful.

1.4 Documentation
(add link/references here...)

3

mailto:jonathan.halliday@redhat.com

Ioannis Ganotis 044543297

2 Transactional File in Java

2.1 Brief Description
Transactions are used in software to increase accuracy and reliability. They perform as
indivisible, complete units of work to access and modify critical business information. It is
really important to ensure that no data loss will happen while modifying such critical
information. From the scope of programming, what an application programmer normally
does, is to call start and end operations on Transaction Managers (TMs) and then include his
business logic within the transaction boundaries (begin – commit/rollback). The business
logic may involve operations like accessing transactional resources such as Databases and
Messaging systems. However, replacing a transactional resource with a filesystem will not
give the expected behaviour. Current versions of Java do not support transactions in their
File I/O library. This means that if, for example, an application programmer uses a TM and
within the boundaries of a transaction invokes operations to modify the bytes of a file, the
updates will be written to disk no matter if the transaction has committed yet or not. This of
course is not the desired behaviour and if such an application was used by a big organisation
(e.g. bank) modifying bytes in a file while an error in the application had previously
occurred, would rather end up with catastrophic results for the organisation and customers
complaining or, be happy for the rest of their lives.

At the moment, programmers that need to avoid the previously described behaviour, have to
implement transactional support in their code. This costs in terms of time needed for the
implementation and also is a bad practice as the application programmer mixes-up his
business logic with transactions. As an approach to this problem, the Transactional File I/O
in Java project has been proposed. It provides a library specially “tailored” to application
programmers that wish to have access to a filesystem with full coverage on ACID semantics.
Like in the examples that follow in this Guide, the library provides an implementation that
allows application programmers to manipulate both contents of files and directories
transactionally.

Another great advantage offered by the library on both approaches (files and directories) is
the recovery support. Even if the system crashes due to some failure in the software or
hardware, after successful restore the library is more than able to reconstruct its state just
before the system's failure and continue any incomplete tasks.

2.2 How to Build and Install
The library, as mentioned earlier, can be used for both managing contents of files and
directories. There are two different packages for this: the txfiles: and txdirs. This gives the
ability to application programmers to compile and use only the package they wish. It would
also be a problem compiling the whole library for those who want to use only the txfiles, as
the txdirs requires an extra installation of the Apache commons transaction project.

4

Ioannis Ganotis 044543297

Requirements for txfiles:

● JDK – at least version 1.5 (http://java.sun.com/javase/)

● Ant build tool – at least version 1.7.0 (http://ant.apache.org/)

● JBossTS 4.4.CR1 or later (http://jboss.org/jbosstm/)

Requirements for txdirs:

● All the requirements of txfiles

● Apache Commons Transaction project – version 1.2
(http://commons.apache.org/transaction/)

In order to compile successfully, the provided “build.xml” file must be edited to include the
home directories of JBoss and Apache Commons Transaction (only if the txdirs is to be
compiled). To do this, the two properties on the top of the build file must be modified
accordingly.

Example

<property name="jbossts.home" value="/home/ioannis/JBoss/install"/>
<property name="apache.home" value="/home/ioannis/Apache/commonstx"/>

The build file is now ready to be used with the ant tool. There are several target-options
available for either compiling the whole library or only one of its packages (txfiles or txdirs)
depending on the future usage of the library. There is also a “jar” target which will package
the compiled code in a jar file under a build directory. The jar file can then be included in
other projects that need the support of this library.

2.3 Running the Demo
No matter which of the two packages you use, you will find a demo package with a runnable
class in each of them. There is an ant target to run each of these. An output in each case will
be produced to demonstrate the transactional behaviour.

Example

[ioannis@localhost ~]$ ant txfilesdemo

5

mailto:ioannis@localhost
http://commons.apache.org/transaction/
http://jboss.org/jbosstm/
http://ant.apache.org/
http://java.sun.com/javase/

Ioannis Ganotis 044543297

3 Available API and Examples

3.1 Part I: Manage Contents of a File Transactionally
Operations that will allow managing the contents of file are read/write operations that can be
invoked through the XAFile class. This class implements DataInput and DataOutput
interfaces and uses a RandomAccessFile object for reading and writing to a file. Generally
speaking the API of this class, regarding file operations (e.g. read/write), is an
implementation of all the methods included in the two interfaces mentioned above, plus
other operations available by a RandomAccessFile object.

3.1.1 Create / Open a File

In order to open a file, an object of the XAFile class must be instantiated. If the file does not
exist, the XAFile constructor automatically creates and opens a new one. Although the
XAFile has been designed and developed with the aim to behave transactionally, the
constructor allows the creation of objects that can be used to read or write directly to files
without transaction support. This is quite similar to using a RandomAccessFile object to
access the contents of a file. The constructor is of the following form:

public XAFile(String filename,
 String mode,
 boolean transactionsEnabled)
 throws IOException

The first parameter in the constructor is the name (including path) of the file that contains the
business data entries. The second parameter specifies the mode in which the file must be
opened and it can be one of the modes used in the RandomAccessFile class. The most usual
ones are “r” or “rw” which opens a file only for reading or for both reading and writing to it,
respectively. Like mentioned before the XAFile can be used in two ways: transactionally or
not. This is specified by the third parameter which is of type boolean. If it is true it means
that transaction support on this file is enabled.

Example

There are three different ways to instantiate XAFile objects.

1. XAFile xaFile = new XAFile("entries.txt", "rw", false);

2. DataInput in = new XAFile("entries.txt", "r", false);

3. DataOutput out = new XAFile("entries.txt", "rw", false);

6

Figure-1.0

Figure-1.1

Ioannis Ganotis 044543297

Obviously, using one of the two interfaces does not give access to methods needed for
transaction support. Even if the transactions are enabled (3rd parameter is set to true)
transactional behaviour will not work and an IOException will be thrown instead.

3.1.2 Invoke File Operations (Transaction Support: Disabled)

After creating the instance, operations such as read and write can be applied to the file.
There is also a file pointer which progresses according to read and write operations or can be
set manually using the seek method provided by the XAFile class. An example of this (using
the first way to instantiate an XAFile object) would look like:

Example

 public static void main(String[] args) throws Exception {
 XAFile xaFile = new XAFile("entries.txt", "rw", false);
 xaFile.writeInt(1); // write Integer(1); position: 1
 xaFile.seek(0); // reset position to: 0
 int result = xaFile.readInt();// read Integer; position: 1
 System.out.println("Read Integer= " + result);
 // other code...
 }

This will open the “entries.txt” file in “rw” access mode so both reading and writing can be
applied. Transaction support is set to be disabled. At the time of creation of the xaFile the
position of the file's pointer is set to 0 which points to the start of the file. A write operation
is then performed through that xaFile object and a value of type Integer is written directly to
the file. The seek method will move the file's pointer to the beginning of the file so as a read
operation can then read the previously written value. The returned result in the above
example will be the number 1.

3.1.3 Invoke File Operations (Transaction Support: Enabled)

As mentioned before, to make XAFile behave transactionally the boolean in its constructor
must be set to true. In addition, a method that will create a new Resource Manager (RM) and
will associate it with both a TM and the current thread must be invoked through the xaFile
object. A TM object is needed here in order to have access to a transaction on which the RM
will be enlisted (transparently to the application programmer).

Example

 public static void main(String[] args) throws Exception {
 XAFile xaFile = new XAFile("entries.txt", "rw", true);
 TransactionManager txMngr = new TransactionManagerImple();

7

Figure-1.2

Ioannis Ganotis 044543297

 txMngr.begin();
 { // business logic start
 xaFile.newTransaction(txMngr);
 xaFile.writeInt(1); // write Integer(1); position: 1
 xaFile.seek(0); // reset position to: 0
 int result = xaFile.readInt();// read Integer; position: 1
 System.out.println("Read Integer= " + result);
 } // business logic end
 txMngr.commit();
 // other code...
 }

The code above demonstrates a simple case with file operations aiming to access the file the
same way the code in Figure-1.2 does, but also transactionally. Even if the file operations
between the two examples look exactly the same the overall behaviour and the outcome is
different.
As you see, the boundaries of the transaction are denoted by the txMngr.begin() and
txMngr.commit() statements. Within these boundaries the application programmer's business
logic is written. An instance of TM is passed as a parameter to the newTransaction()
provided by the xaFile object. What this method actually does, is to create a new
XAResourceManager (XAREM), get the transaction object from the TM (passed as
parameter) and enlist the XAREM object to the retrieved transaction. It will also associate
the XAREM with the current thread id, but the reason of this will be explained later on. The
program in Figure-1.3 will then try to apply some file operations with the first one being to
write the Integer value 1 to the file. As the file operation is within the boundaries of a
transaction, the value will not be written to the file yet. Instead, it will be kept in memory
and log files (durable storage in case of system crash). Any read operation within the same
transaction will return the modified bytes (if they exist) instead of the actual bytes in the file.
Consider a scenario where an Integer of value “2” is already written at position 0 in the file
used in the example above. The read operation used after having the Integer 1 written within
the transaction will return the value 1. Now if somebody else, outside of this transaction tries
to read an Integer at position 0 in the file while the transaction is still in progress, he will get
the actual value (an Integer number “2”) rather than the modified one (Integer value “1”). If
no errors appear and the commit statement is reached, any modifications happened within the
transaction will be written to the file so anybody else can see them. If the commit statement
is not reached for some reason the TM should be informed about this, so the following
model is encouraged to be used:

Example

 public static void main(String[] args) throws Exception {
 XAFile xaFile = new XAFile("entries.txt", "rw", true);
 TransactionManager txMngr = new TransactionManagerImple();

8

Figure-1.3

Ioannis Ganotis 044543297

 try {
 txMngr.begin();
 {
 xaFile.newTransaction(txMngr);
 // do business work here...
 }
 txMngr.commit();
 } catch (Exception e) {
 txMngr.rollback();
 }
 // other code...
 }

With this model if any error occurs while reading or writing to the file, the thrown exception
will be caught and the TM will rollback any changes made so far.

The application programmer must be careful here when invoking the newTransaction()
method. As in Figure-1.3 the method is invoked as the first statement within the boundaries
of the transaction and before any read/write operations. If the method is called in the wrong
place it will be reported to the application programmer by throwing a relevant exception.
Importantly, the newTransaction() method cannot be called twice by the same thread as in
the background each thread's id is associated with an XAREM object.

3.1.4 Multiple Concurrent Transactions

In this part, when managing contents of a file transactionally it is possible to have multiple
concurrent transactions updating parts on the same file. This concurrency can be achieved by
creating multiple threads Each thread will have its own TM associated with it and obviously
its own read/write operations.

Example

 final XAFile xaFile = new XAFile("entries.txt", "rw", true);

 // threadcode bellow
 Thread th = new Thread(new Runnable () {
 public void run () {
 try {
 TransactionManager txMngr = new TransactionManagerImple();
 try {
 txMngr.begin();
 {
 xaFile.newTransaction(txMngr);
 // do business work here...
 }
 txMngr.commit();
 } catch (Exception e) {
 txMngr.rollback();

9

Figure-1.4

Ioannis Ganotis 044543297

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 th.start();

The “thread” code in the above example can be repeated to meet the number of threads that
want to access the file simultaneously. When using multiple threads interferences may
appear while accessing the same parts of the file. It is not necessary for the application
programmer to build an application that will avoid such interferences. The locking
mechanism, also included in the library, will take care of this and if access is denied while
processing a part of the file due to some lock conflict, it will be reported by throwing a
build-in LockRefusedException. The application programmer can detect such exceptions and
retry the file operations until the locks are released. Although the library will protect
concurrent access on the same data to avoid inconsistency issues, it may lead to reduced
concurrency control. So, it would be of better performance if the application programmer
could provide a model by which interferences could be avoided to the maximum.

3.1.5 Multiple VMs - Concurrent Transactions

A file can be managed transactionally using different VMs. All of the VMs have a shared
space to persist or retrieve locks. The idea is to let every VM know which parts of a file are
currently managed by other VMs. There is nothing special for the application programmer to
do or to take care of in this case as everything happens transparently. The only issue again is
the concurrency control which will be reduced if many conflicts appear while the VMs are
accessing the same data.

3.1.6 Close the File

Like in every Input or Output class in Java's I/O library there is a close() method which
closes the stream used for reading/writing and releases any system resources associated with
it. Similarly, invoking the close() operation provided by the XAFile class will close the
stream (actually the RandomAccessFile in this case) and will remove unnecessary files
created by the library during the execution of transactions. If the method is called while a
transaction is still in progress it will cause an IOException to be thrown complaining about
incomplete transactions. So the application programmer must ensure that all the transactions
have either committed or rolled back and then close the XAFile.

Example

 XAFile xaFile = new XAFile("entries.txt", "rw", true);
 // do work with xaFile here...
 xaFile.close();

10

Figure-1.5

Figure-1.6

Ioannis Ganotis 044543297

3.2 Part II: Manage Contents of a Directory
Transactionally

This is quite similar to Part I but deals with manipulation of directory contents rather than
contents of files. The XADir class represents the directory the contents of which are going to
be modified. Its contents are represented by XADirFile objects each of which provides
operations like renaming, deleting and creating a new file. Unlike Part I, the use of multiple
VMs will result in unexpected behaviour as new instances of XADir will try to remove pre-
existing transactions. However, you may use concurrent transactions to manage contents of a
directory as soon as they do not interfere. If they do, the library will throw an exception to
report the existence of conflicts.

3.2.1 Create / Open a Directory

The first step is to create an XADir object. The already provided constructor is of the
following form:

 public XADir(java.io.File storeDir)
 throws java.io.IOException

The storeDir parameter is passed by the application programmer and must point to a
directory the contents of which are to be managed transactionally. If the File passed by the
user does not represent a directory an appropriate exception will be thrown. Also if the File
does not exist, the constructor will create a new one.

Example

XADir xadir = new XADir(new File("/home/ioannis/businesstxdir"));

Suppose the transactional directory we want to work with is called “businesstxdir”. Also
assume the directory is initially empty. As soon as the directory contains no files, the only
possible operation is to create a new file. Like in Part I above, in order to benefit from
transaction support a TM is needed to define the boundaries of a transaction.

Example

 XADir xadir = new XADir(new File("/home/ioannis/businesstxdir"));
 TransactionManager txMngr = new TransactionManagerImple();

 txMngr.begin();
 {

11

Figure-1.7

Figure-1.8

Ioannis Ganotis 044543297

 xadir.startTransactionOn(txMngr);
 // business logic (e.g. create, delete, rename files)
 }
 txMngr.commit();

There is also an additional statement which needs to appear within the scope of a transaction
and right after the TM has begun. The startTransactionOn() method needs to be called
through the xadir object. This method gets a TM object as a parameter and uses it to retrieve
a transaction. A new XAREM will be created and enlisted to the transaction.

3.2.2 Invoke Operations on Directory's Files

To create a new file a construction of an XADirFile object is necessary. The constructor of
this class is of the form:

public XADirFile(java.io.File file,
 XADir xadir)

The first parameter will take the File instance which contains the name of the new file. The
second is the xadir object created earlier. This is to specify that we want to create a new file
under the xadir directory.

Example

 XADir xadir = new XADir(new File("/home/ioannis/businesstxdir"));
 TransactionManager txMngr = new TransactionManagerImple();

 txMngr.begin();
 {
 xadir.startTransactionOn(txMngr);
 XADirFile newFile = new XADirFile(new File("resource.txt"),
 xadir);
 // business logic (e.g. create, delete, rename files)
 newFile.createNewFile();
 }
 txMngr.commit();

The “resource.txt” file will only be created to disk after the commit statement has been
reached. Now lets assume that the xadir contains a number of files. To get the files from the
directory the listTXFiles() method can be used. This method will return an array of
XADirFile objects which represent the files in the xadir. Operations are exposed to the
application programmer through each of the objects in the array. Consider a case where the
programmer wants to apply an operation in one of the existing files in the xadir, for example
rename the first of the files in the array list. The example below demonstrates how it can be
achieved:

12

Figure-1.9

Figure-1.10

http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/txdirs/XADir.html

Ioannis Ganotis 044543297

Example

 XADir xadir = new XADir(new File("/home/ioannis/businesstxdir"));
 TransactionManager txMngr = new TransactionManagerImple();

 txMngr.begin();
 {
 xadir.startTransactionOn(txMngr);
 // business logic (e.g. create, delete, rename files)
 XADirFile[] files = xadir.listTXFiles();
 files[0].renameTo(new File("new_name.txt"));
 }
 txMngr.commit();

Again, the first file in the array list will only be affected if the TM has committed.
Operations other than renameTo() can be applied on existing files.

3.2.3 Multiple Concurrent Transactions

Like in the first part, it is possible to set up a number of threads each of which is associated
with a new transaction. The transactions can then perform operations on the contents of the
directory which will succeed only upon successful completion of the transactions.

Example

 final XADir xadir = new XADir(new
 File("/home/ioannis/businesstxdir"));
 TransactionManager txMngr = new TransactionManagerImple();

 // thread-code bellow
 Thread th = new Thread(new Runnable () {
 public void run () {
 try {
 TransactionManager txMngr = new TransactionManagerImple();
 try {
 txMngr.begin();
 {
 xadir.startTransactionOn(txMngr);
 // business logic (e.g. create, delete, rename files)
 }
 txMngr.commit();
 } catch (Exception e) {
 txMngr.rollback();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });

13

Figure-1.11

Figure-1.12

Ioannis Ganotis 044543297

The “thread” code in Figure-1.12 can be repeated depending on the number of concurrent
operations the application programmer wants to perform on the files of the directory. Using
multiple threads is good as tasks can be completed quicker. A Locking mechanism will
ensure that access to the same data will not cause any inconsistencies. However, a repeated
number of lock conflicts while accessing the same file may result in bad concurrency
control. It is encouraged that the application programmer will provide a sufficiently good
model to avoid as many conflicts as possible.

3.2.4 Close the Directory

Importantly, the application programmer must invoke the close() method when all the
transaction work and work related to the directory is complete. This will remove any
temporary folders used during the execution of the transaction to keep “shadow” files and
logs that are not needed any more.

Example

 XADir xadir = new XADir(new File("/home/ioannis/businesstxdir"));
 // do work with xadir here...
 xadir.close();

3.3 Failure Recovery
As there is no absolute guarantee for today's systems that their software or hardware will
never fail, ability to recover from failures gives a powerful advantage to this library. Both of
the parts described earlier use XAREMs that implement Java's standard XAResource
interface as well as the Serializable interface so their state can be stored and restored. In case
of a system failure a Recovery Manager (RECM) is needed to help both TMs and XAREMs
to reconstruct their state just before the system crash. The following lines of code present
such a RECM which uses a thread to detect interrupted transactions. The following code
must also be placed before doing any other job, at the very beginning of the application.

 RecoveryManager rm = RecoveryManager.manager();
 rm.startRecoveryManagerThread();

Alternatively, you can use the build-in RecoverManager class under the recovery package of
this library.

14

Figure-1.13

Figure-1.14

Ioannis Ganotis 044543297

4 API Overview
Below are the methods available to the application programmer. For more information and
detailed description on the methods below please refer to the relative documentation
mentioned in the Introduction section of this Guide.

4.1 Part I: Transactional File Methods

void close() Closes the XAFile

void flush() Forces data to be written to disk by instantly
closing and re-opening the random access file.

String getFilename() Returns the name of the file

long getFilePointer() Returns the current offset in this file.

String getMode()
Returns the access mode in which the XAFile
was created

RandomAccessFile getRAF() Returns the RandomAccessFile object used
to read/write

long length() Returns the length of this file.

void newTransaction(javax.t
ransaction.Transaction
Manager txnMngr)

Method to create a new Transaction and enlist
XAResources.

int

read(byte[] bytes)

Reads up to bytes.length bytes of data
from this file (or memory if there are
uncommitted byte updates) into an array of
bytes.

 int read(byte[] bytes, int
off, int len)

Reads exactly len bytes of data from this file
(or memory if there are uncommitted byte
updates) into an array of bytes.

boolean readBoolean() Reads a boolean from this file.

byte readByte() Reads a signed eight-bit value from this file (or
memory if there are uncommitted byte updates).

char readChar() Reads a character from this file.

String readChars(char[]
chars)

Reads up to chars.length characters from
this file (or memory if there are uncommitted
byte updates) into an array of characters.

int[] readDirectlyFromFile(i
nt len)

Method to read exactly len bytes directly from
the file and starting at the current file pointer.

double readDouble() Reads a double from this file.

float readFloat() Reads a float from this file (or memory if
there are uncommitted byte updates).

void
readFully(byte[]
bytes)

Reads bytes.length bytes from this file(or
memory if there are uncommitted updated bytes)
into the byte array, starting at the current file
pointer.

void readFully(byte[] Reads exactly len bytes from this file(or

15

http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readFully(byte[], int, int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readFully(byte[])
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readFloat()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readDouble()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readDirectlyFromFile(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readChars(char[])
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readChar()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readByte()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readBoolean()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#read(byte[], int, int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#read(byte[])
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#newTransaction(javax.transaction.TransactionManager)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#length()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#getRAF()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#getMode()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#getFilePointer()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#getFilename()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#flush()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#close()

Ioannis Ganotis 044543297

bytes, int off, int
len)

memory if there are uncommitted updated bytes)
into the byte array, starting at the current file
pointer.

int readInt()
Reads a signed 32-bit integer from this file (or
memory if there are uncommitted byte updates).

String readLine() Reads the next line of text from this file.

long readLong() Reads a signed 64-bit integer from this file.

short readShort() Reads a signed 16-bit number from this file.

int
readUnsignedByte()

Reads an unsigned eight-bit number from this
file (or memory if there are uncommitted byte
updates).

int readUnsignedShort() Reads an unsigned 16-bit number from this file.

String readUTF()
Reads in a string from this file (or memory if
there are uncommitted byte updates).

void
seek(long position)

Sets the file-pointer offset, measured from the
beginning of this file, at which the next read or
write occurs.

void setTransactionsEnabled
(boolean
transactionsEnabled)

Method to enable Transactional support in the
file

int skipBytes(int n)
Attempts to skip over n bytes of input
discarding the skipped bytes.

void
write(byte[] bytes)

Attempts to write bytes.length bytes from
the specified byte array to this file, starting at
current file pointer.

void write(byte[] bytes,
int off, int len)

Attempts to write len bytes from the specified
byte array starting at offset off to this file.

void write(int b) Attempts to write the specified byte to this file.

void writeBoolean(boolean
b)

Attempts to write a boolean to the file as a
one-byte value.

void writeByte(int b)
Attempts to write a byte to the file as a one-
byte value.

void writeBytes(String
bytes)

Attempts to write the string to the file as a
sequence of bytes.

void writeChar(int ch)
Attempts to write a char to the file as a two-
byte value, high byte first.

void writeChars(String s)
Attempts to write a string to the file as a
sequence of characters.

 void

writeDouble(double d)

Converts the double argument to a long using
the doubleToLongBits method in class
Double, and then attempts to write that long
value to the file as an eight-byte quantity, high
byte first.

 void writeFloat(float f) Converts the float argument to an int using the
floatToIntBits method in class Float,
and then attempts to write that int value to the

16

http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeFloat(float)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeDouble(double)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeChars(java.lang.String)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeChar(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeBytes(java.lang.String)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeByte(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeBoolean(boolean)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#write(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#write(byte[], int, int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#write(byte[])
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#skipBytes(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#setTransactionsEnabled(boolean)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#seek(long)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readUTF()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readUnsignedShort()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readUnsignedByte()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readShort()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readLong()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readLine()
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#readInt()

Ioannis Ganotis 044543297

file as a four-byte quantity, high byte first.

void writeInt(int n)
Attempts to write an int to the file as four
bytes, high byte first.

void writeLong(long l)
Attempts to write a long to the file as eight
bytes, high byte first.

void writeShort(int s)
Attempts to write a short to the file as two
bytes, high byte first.

void
writeUTF(String str)

Attempts to write a string to the file using
modified UTF-8 encoding in a machine-
independent manner.

17

http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/DataInput.html#modified-utf-8
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeUTF(java.lang.String)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeShort(int)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeLong(long)
http://www.students.ncl.ac.uk/ioannis.ganotis/RedhatIO/doc/XA_lib/XAFile.html#writeInt(int)

Ioannis Ganotis 044543297

4.2 Part II: Transactional Directory Methods

4.2.1 XADir class

void

close()

As this class represents a transactional
directory, the application programmer
must call this method after his
transactional work is over.

long

length()
Returns the number of files (not
directories) under this transactional
directory.

XADirFile[]
listTXFiles()

This method lists all the files under the
transactional directory.

void
startTransactionOn(ja
vax.transaction.Trans
actionManager
txnMngr)

This method must be used after a
TransactionManager has begun
and within the boundaries of a
transaction (begin,
commit/rollback).

4.2.2 XADirFile class

boolean createNewFile() Create a new file in the disk.

boolean delete() This method will delete the file.

String getName() Returns the name of the file.

InputStream
readResource()

Returns an InputStream containing the
bytes of this XADirFile file.

boolean renameTo(java.io.File
file)

Renames this file to the name of the
file given by file.

OutputStream

writeResource()
Returns an OutputStream containing
the bytes written to this XADirFile
file.

18

file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#writeResource()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#renameTo(java.io.File)
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#readResource()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#getName()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#delete()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html#createNewFile()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADir.html#startTransactionOn(javax.transaction.TransactionManager)
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADir.html#listTXFiles()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADirFile.html
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADir.html#length()
file:///home/jhalli/IdeaProjects/jboss/workspace/transactionalFileIO/java_projects/idea/RedhatFileIO/doc/org/jboss/jbossts/fileio/xalib/txdirs/dir/XADir.html#close()

	1 Introduction
	1.1 About this Guide
	1.2 Acknowledgements
	1.3 Prerequisites
	1.4 Documentation

	2 Transactional File in Java
	2.1 Brief Description
	2.2 How to Build and Install
	2.3 Running the Demo

	3 Available API and Examples
	3.1 Part I: Manage Contents of a File Transactionally
	3.1.1 Create / Open a File
	3.1.2 Invoke File Operations (Transaction Support: Disabled)
	3.1.3 Invoke File Operations (Transaction Support: Enabled)
	3.1.4 Multiple Concurrent Transactions
	3.1.5 Multiple VMs - Concurrent Transactions
	3.1.6 Close the File

	3.2 Part II: Manage Contents of a Directory Transactionally
	3.2.1 Create / Open a Directory
	3.2.2 Invoke Operations on Directory's Files
	3.2.3 Multiple Concurrent Transactions
	3.2.4 Close the Directory

	3.3 Failure Recovery

	4 API Overview
	4.1 Part I: Transactional File Methods
	4.2 Part II: Transactional Directory Methods
	4.2.1 XADir class
	4.2.2 XADirFile class

