
JBoss Enterprise
Application Platform 4.3

Messaging User Guide
for Use with JBoss Enterprise Application Platform 4.3

Permanent Team: Tim Fox (Project Lead), Jeff Mesnil
(Core Developer), Andy Taylor (Core Developer), Clebert
Suconic (Core Developer), Howard Gao (Core Developer)

Messaging User Guide

JBoss Enterprise Application Platform 4.3 Messaging User Guide
for Use with JBoss Enterprise Application Platform 4.3
Edition 4.3.10

Author Permanent Team: Tim Fox
(Project Lead), Jeff Mesnil (Core
Developer), Andy Taylor (Core
Developer), Clebert Suconic
(Core Developer), Howard Gao
(Core Developer)

Copyright © 2011 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

This book is about JBoss Messaging 1.4 for use with JBoss Enterprise Application Platform 4.3 and its
patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

iii

1. Introduction 1
1.1. JBoss Messaging Features ... 1
1.2. Clustering Features .. 2
1.3. Compatibility with JBossMQ .. 3
1.4. Limitations of JBossMQ .. 4

2. Running the Examples 5

3. Configuration 7
3.1. Configuring Remote JMS Clients ... 7
3.2. System Properties used by JBoss Messaging .. 8

3.2.1. support.bytesId .. 8
3.2.2. retain.oldxabehaviour ... 8
3.2.3. mapmessage.support.null.object ... 9

3.3. Configuring the ServerPeer ... 9
3.3.1. ServerPeer attributes ... 10
3.3.2. We now discuss the MBean operations of the ServerPeer MBean. 14
3.3.3. ListAllPreparedTransactions ... 16
3.3.4. ListPreparedTransactions ... 16
3.3.5. ShowMessageDetails ... 16
3.3.6. CommitPreparedTransaction .. 16
3.3.7. RollbackPreparedTransaction ... 16

3.4. Changing the Database .. 16
3.5. Configuring the Post office .. 16

3.5.1. Post Office Attributes ... 20
3.6. Configuring the Persistence Manager .. 21

3.6.1. Important notes for Sybase and Microsoft SQL Server users 24
3.6.2. PersistenceManager MBean Attributes .. 24

3.7. Configuring the JMS user manager ... 25
3.7.1. JMSUserManager MBean Attributes ... 26

3.8. Configuring Destinations ... 26
3.8.1. Pre-configured destinations .. 26

3.9. Configuring queues .. 29
3.9.1. Queue MBean Attributes .. 29
3.9.2. DropOldMessageOnRedeploy ... 32
3.9.3. We now discuss the MBean operations of the Queue MBean 32

3.10. Configuring topics ... 33
3.10.1. Topic MBean Attributes .. 33
3.10.2. We now discuss the MBean operations of the Topic MBean 36

3.11. Configuring Connection Factories .. 37
3.11.1. We now discuss the MBean attributes of the ConnectionFactory MBean 38
3.11.2. EnableOrderingGroup ... 41
3.11.3. DefaultOrderingGroupName .. 41

3.12. Configuring the remoting connector ... 41
3.13. ServiceBindingManager .. 44
3.14. Message Driven Beans ... 44

4. JBoss Messaging Clustering Notes 47
4.1. Unique server peer id ... 47
4.2. Clustered destinations .. 47
4.3. Clustered durable subs ... 47
4.4. Clustered temporary destinations .. 47
4.5. Non clustered servers ... 47
4.6. Message ordering in the cluster .. 47
4.7. Idempotent operations .. 48

Messaging User Guide

iv

4.8. Clustered connection factories .. 48

5. JBoss Messaging XA Recovery Configuration 49

6. JBoss Messaging Message Bridge Configuration 51
6.1. Message bridge overview ... 51
6.2. Bridge deployment ... 52
6.3. Bridge configuration .. 52

6.3.1. SourceProviderLoader .. 54
6.3.2. TargetProviderLoader ... 54
6.3.3. SourceDestinationLookup ... 54
6.3.4. TargetDestinationLookup .. 54
6.3.5. SourceUsername ... 54
6.3.6. SourcePassword .. 54
6.3.7. TargetUsername .. 55
6.3.8. TargetPassword ... 55
6.3.9. QualityOfServiceMode .. 55
6.3.10. Selector ... 55
6.3.11. MaxBatchSize .. 55
6.3.12. MaxBatchTime ... 55
6.3.13. SubName .. 55
6.3.14. ClientID ... 55
6.3.15. FailureRetryInterval .. 56
6.3.16. MaxRetries .. 56
6.3.17. AddMessageIDInHeader ... 56

7. Enabling JBoss Messaging Ordering Group 57
7.1. How to Enable Message Ordering Group ... 58
7.2. Notes and Limitations ... 59

A. Revision History 61

Chapter 1.

1

Introduction
JBoss Messaging provides an open source and standards-based messaging platform that brings
enterprise-class messaging to the mass market.

JBoss Messaging implements a high performance, robust messaging core that is designed to support
the largest and most heavily utilized SOAs, enterprise service buses (ESBs) and other integration
needs ranging from the simplest to the highest demand networks.

It will allow you to smoothly distribute your application load across your cluster, intelligently balancing
and utilizing each nodes CPU cycles, with no single point of failure, providing a highly scalable and
performant clustering implementation.

JBoss Messaging includes a JMS front-end to deliver messaging in a standards-based format as well
as being designed to be able to support other messaging protocols in the future.

1.1. JBoss Messaging Features
JBoss Messaging provides:

• A fully compatible and Sun certified JMS 1.1 implementation, that currently works with a standard
4.2 or later JBoss Application Server installation.

• A strong focus on performance, reliability and scalability with high throughput and low latency.

• A foundation for JBoss ESB for SOA initiatives; JBoss ESB uses JBoss Messaging as its default
JMS provider.

Other JBoss Messaging features include:

• Publish-subscribe and point-to-point messaging models

• Persistent and non-persistent messages

• Guaranteed message delivery that ensures that messages arrive once and only once where
required

• Transactional and reliable - supporting ACID semantics

• Customizable security framework based on JAAS

• Fully integrated with JBoss Transactions (formerly known as Arjuna JTA) for full transaction
recoverability.

• Extensive JMX management interface

• Support for most major databases including Oracle, DB2, Sybase, MS SQL Server, PostgreSQL
and MySQL

• HTTP transport to allow use through firewalls that only allow HTTP traffic

• Servlet transport to allow messaging through a dedicated servlet.

• SSL transport

• Configurable DLQs (Dead Letter Queues) and Expiry Queues

Chapter 1. Introduction

2

• Message statistics. Gives you a rolling historical view of what messages were delivered to what
queues and subscriptions

• Automatic paging of messages to storage. Allows the use of very large queues - too large to fit in
memory at once

• Strict message ordering. JBoss Messaging's implementation of strict message ordering is called
message ordering groups. Messages in one ordering group obey strict delivering order, which
means that messages in an ordering group will be delivered exactly in the order of their arrival at the
target queue (FIFO). Ordering groups can be enabled by either programming APIs or configuration.

Clustering features:

• Fully clustered queues and topics. "Logical" queues and topics are distributed across the cluster.
You can send to a queue or a topic from any node, and receive from any other.

• Fully clustered durable subscriptions. A particular durable subscription can be accessed from
any node of the cluster - allowing you to spread processing load from that subscription across the
cluster.

• Fully clustered temporary queues. Send a message with a replyTo of a temp queue and it can be
sent back on any node of the cluster.

• Intelligent message redistribution. Messages are automatically moved between different nodes of
the cluster if consumers are faster on one node than another. This can help prevent starvation or
build up of messages on particular nodes.

• Message order protection. If you want to ensure that the order of messages produced by a producer
is the same as is consumed by a consumer then you can set this to true. This works even in the
presence of message redistribution.

• Fully transparent failover. When a server fails, your sessions continue without exceptions on a
new node as if nothing happened. (Fully configurable - If you don't want this you can fall back to
exceptions being thrown and manually recreation of connections on another node)

• High availability and seamless fail-over. If the node you are connected to fails, you will automatically
fail over to another node and will not lose any persistent messages. You can carry on with your
session seamlessly where you left off. Once and only once delivery of persistent messages is
respected at all times.

• Message bridge. JBoss Messaging contains a message bridge component which enables you to
bridge messages between any two JMS1.1 destinations on the same or physical separate locations.
(E.g. separated by a WAN). This allows you to connect geographically separate clusters, forming
huge globally distributed logical queues and topics.

1.2. Clustering Features

Fully clustered queues and topics
"Logical" queues and topics are distributed across the cluster. You can send to a queue or a topic from
any node, and receive from any other.

Fully clustered durable subscriptions
A particular durable subscription can be accessed from any node of the cluster - allowing you to
spread processing load from that subscription across the cluster.

Compatibility with JBossMQ

3

Fully clustered temporary queues
Send a message with a replyTo of a temp queue and it can be sent back on any node of the cluster.

Intelligent message redistribution
Messages are automatically moved between different nodes of the cluster if consumers are faster on
one node than another. This can help prevent starvation or build up of messages on particular nodes.

Message order protection
If you want to ensure that the order of messages produced by a producer is the same as is
consumed by a consumer then you can set this to true. This works even in the presence of message
redistribution.

Fully transparent failover
When a server fails, your sessions continue without exceptions on a new node as if nothing happened.
(Fully configurable - If you don't want this you can fall back to exceptions being thrown and manually
recreation of connections on another node)

High availability and seamless fail-over
If the node you are connected to fails, you will automatically fail over to another node and will not lose
any persistent messages. You can carry on with your session seamlessly where you left off. Once and
only once delivery of persistent messages is respected at all times.

Message bridge
JBoss Messaging contains a message bridge component which enables you to bridge messages
between any two JMS1.1 destinations on the same or physical separate locations. (E.g. separated by
a WAN). This allows you to connect geographically separate clusters, forming huge globally distributed
logical queues and topics.

1.3. Compatibility with JBossMQ
JBoss MQ is the JMS implementation currently shipped within JBoss AS. Since JBoss Messaging
is JMS 1.1 and JMS 1.0.2b compatible, the JMS code written against JBossMQ will run with JBoss
Messaging without any changes.

JBoss Messaging does not have wire format compatibility with JBoss MQ so it would be necessary to
upgrade JBoss MQ clients with JBoss Messaging client jars

Important

Even if JBoss Messaging deployment descriptors are very similar to JBoss MQ deployment
descriptors, they are not identical, so they will require some simple adjustments to get them
to work with JBoss Messaging. Also, the database data model is completely different, so don't
attempt to use JBoss Messaging with a JBoss MQ data schema and vice-versa.

Chapter 1. Introduction

4

Note

JBoss Messaging is built against the JBoss AS 4.2 libraries which are built using Java 5.
Therefore JBoss Messaging only runs with Java 5 or later.

1.4. Limitations of JBossMQ
JBossMQ has two fundamental limitations:
• JBossMQ is based on SpyderMQ (the open source project) which is a non-clustered broker.

• The threading model and the overall design of the non-clustered broker leads to performance
limitations in certain high load usage scenarios.

Chapter 2.

5

Running the Examples
In the directory docs/examples/jboss-messaging-examples, you will find a set of examples
demonstrating JBoss Messaging working in various situations.

By familiarizing yourself with the examples you will gain a strong understanding of the different ways
JBoss Messaging can be used. The examples can also be used as a base for extending JBoss
Messaging functionality.

You can override the default ports the example will attempt connection through by editing the
jndi.properties file in the particular example directory.

Important

The unclustered examples require a running JBoss Enterprise Application Server instance with
default settings.

You must run the examples on JBoss Enterprise Application Platform non-clustered profiles: the
All and Production profiles are not supported.

The readme.html for each example provides the setup details, expected output, and simple
troubleshooting.

Unclustered Examples
queue

This example shows a simple send and receive to a remote queue using a JMS client

topic
This example shows a simple send and receive to a remote topic using a JMS client

mdb
This example demonstrates usage of an EJB2.1 MDB with JBoss Messaging

ejb3mdb
This example demonstrates usage of an EJB3 MDB with JBoss Messaging

stateless
This example demonstrates an EJB2.1 stateless session bean interacting with JBoss Messaging

mdb-failure
This example demonstrates rollback and redelivery occuring with an EJB2.1 MDB

secure-socket
This example demonstrates a JMS client interacting with a JBoss Messaging server using SSL
encrypted transport

http
This example demonstrates a JMS client interacting with a JBoss Messaging server tunneling
traffic over the HTTP protocol

web-service
This example demonstrates JBoss web-service interacting with JBoss Messaging

Chapter 2. Running the Examples

6

stateless-clustered
This example demonstrates a JMS client interacting with clustered EJB2.1 stateless session bean,
which in turn interacts with JBoss Messaging. The example uses HAJNDI to lookup the connection
factory

bridge
This example demonstrates using a message bridge. It deploys a message bridge in JBoss AS
which then proceeds to move messages from a source to a target queue

servlet
This example demonstrates how to use servlet transport with JBoss Messaging. It deploys a
servlet and a ConnectionFactory that uses the servlet transport.

ordering-group
This example demonstrates using strict message ordering with JBoss Messaging. It uses JBoss
Messaging ordering group API to deliver strictly ordered messages, regardless of their priorities.

Important

The clustered examples require two running JBoss Application Server instances with port settings
set to ports-01 and ports-02.

The examples are supported for use on the Enterprise Application Platform All and
Production server profiles.

The readme.html for each example provides the setup details, expected output, and simple
troubleshooting.

Clustered Examples
distributed-topic

This example demonstrates a JMS client interacting with a JBoss Messaging distributed topic - it
requires two JBoss AS instances to be running

distributed-queue
This example demonstrates a JMS client interacting with a JBoss Messaging distributed queue - it
requires two JBoss AS instances to be running

queue-failover
This example demonstrates the transparent failover of a JMS consumer.

Chapter 3.

7

Configuration
The JMS API specifies how a messaging client interacts with a messaging server. The exact definition
and implementation of messaging services, such as message destinations and connection factories,
are specific to JMS providers. JBoss Messaging has its own configuration files to configure services. If
you are migrating services from JBossMQ (or other JMS provider) to JBoss Messaging, you will need
to understand those configuration files.

In this chapter, we discuss how to configure various services inside JBoss Messaging, which work
together to provide JMS API level services to client applications.

The JBoss Messaging service configuration is spread among several configuration files. Depending
on the functionality provided by the services it configures, the configuration data is distributed
between messaging-service.xml, remoting-bisocket-service.xml, xxx-persistence-
service.xml (where xx is the name of your database), connection-factories-service.xml
and destinations-service.xml.

The AOP client-side and server-side interceptor stacks are configured in aop-messaging-
client.xml and aop-messaging-server.xml. Normally you will not want to change them, but
some of the interceptors can be removed to give a small performance increase, if you don't need
them. Be very careful you have considered the security implications before removing the security
interceptor.

Clustering will not work with the default database.

JBoss uses HSQLDB as the default database which is not a production-ready database. For
a JBoss Messaging cluster to work, all nodes must have access to a production-ready shared
database. It is therefore necessary to replace the default HSQLDB database with a production-
ready shared database.

3.1. Configuring Remote JMS Clients
If you need your remote JMS client to send a message to a Messaging provider, you must declare
a number of JBoss Enterprise Application Platform libraries on the client classpath. It is important to
declare the libraries in the correct order, otherwise unexpected behavior may occur.

Chapter 3. Configuration

8

Obtain remote JMS client libraries and set the classpath

Follow this task to correctly obtain all required libraries for remote JMS clients, and declare the
libraries in the remote JMS client classpath.

Prerequisites
Access to a JBoss Enterprise Application Platform 4.3 installation.

1. On the JBoss Enterprise Application Platform 4.3 installation, navigate to JBOSS_EAP_DIST/
jboss-as/client

2. Download the following files from the /client directory to the hardware hosting the remote JMS
client.

• jboss-messaging-client.jar

• jboss-remoting.jar

• jbossall-client.jar

• javassist.jar

• trove.jar

• log4j.jar

• jboss-aop-jdk50.jar

3. Ensure all files are saved to the remote JMS client classpath.

4. Declare the library order in the classpath configuration file of the remote JMS client.

Warning

jboss-remoting.jar must be declared before jbossall-client.jar in the classpath.

3.2. System Properties used by JBoss Messaging

3.2.1. support.bytesId
This system property controls the default behavior when constructing a JBossMessage object from
a foreign message object. If set to true, the JBossMessage constructor will try to extract the native
byte[] correlation ID from the foreign message headers. If set to false, it will use the normal string type
JMSCorrelationID. If this system property is absent or is given some value other than 'true' and 'false',
it will defaults to 'true'.

3.2.2. retain.oldxabehaviour
This system property controls what kind of exception a JMS XAResource throws when the
prepare is called after the connection is broken. If this property is not defined, an XAException
with XA_RBCOMMFAIL error code will be thrown. If this propertie is defined, an XAException with
XA_RETRY error code will be thrown instead. JBM by default doesn't define this property.

mapmessage.support.null.object

9

3.2.3. mapmessage.support.null.object
This system property, once defined, allows null values in MapMessage.setObject(String key, Object
value). JBM by default doesn't define this property, which means passing null values to the setObject()
method will cause a MessageFormatException to be thrown.

3.3. Configuring the ServerPeer
The Server Peer is the heart of the JBoss Messaging JMS facade. The server's configuration, resides
in messaging-service.xml configuration file.

All JBoss Messaging services are rooted at the server peer

An example of a Server Peer configuration is presented below. Note that not all values for the server
peer's attributes are specified in the example

 <!-- ServerPeer MBean configuration
 ============================== -->
 <mbean code="org.jboss.jms.server.ServerPeer"
 name="jboss.messaging:service=ServerPeer"
 xmbean-dd="xmdesc/ServerPeer-xmbean.xml">

 <!-- The unique id of the server peer - in a cluster each node MUST have a unique value
 - must be an integer -->

 <attribute name="ServerPeerID">0</attribute>

 <!-- The default JNDI context to use for queues when they are deployed without
 specifying one -->

 <attribute name="DefaultQueueJNDIContext">/queue</attribute>

 <!-- The default JNDI context to use for topics when they are deployed without
 specifying one -->

 <attribute name="DefaultTopicJNDIContext">/topic</attribute>

 <attribute name="PostOffice">jboss.messaging:service=PostOffice</attribute>

 <!-- The default Dead Letter Queue (DLQ) to use for destinations.
 This can be overridden on a per destinatin basis -->

 <attribute name="DefaultDLQ">
 jboss.messaging.destination:service=Queue,name=DLQ
 </attribute>

 <!-- The default maximum number of times to attempt delivery of a message before
 sending to the DLQ (if configured).
 This can be overridden on a per destination basis -->

 <attribute name="DefaultMaxDeliveryAttempts">10</attribute>

 <!-- The default Expiry Queue to use for destinations. This can be overridden on a per
 destinatin basis -->

 <attribute name="DefaultExpiryQueue">
 jboss.messaging.destination:service=Queue,name=ExpiryQueue
 </attribute>

 <!-- The default redelivery delay to impose. This can be overridden on a per
 destination basis -->

 <attribute name="DefaultRedeliveryDelay">0</attribute>

Chapter 3. Configuration

10

 <!-- The periodicity of the message counter manager enquiring on queues for statistics
 -->

 <attribute name="MessageCounterSamplePeriod">5000</attribute>

 <!-- The maximum amount of time for a client to wait for failover to start on the
 server side after
 it has detected failure -->

 <attribute name="FailoverStartTimeout">60000</attribute>

 <!-- The maximum amount of time for a client to wait for failover to complete on the
 server side after
 it has detected failure -->

 <attribute name="FailoverCompleteTimeout">300000</attribute>

 <!-- The maximum number of days results to maintain in the message counter history -->

 <attribute name="DefaultMessageCounterHistoryDayLimit">-1</attribute>

 <!-- The name of the connection factory to use for creating connections between nodes
 to pull messages -->

 <attribute name="ClusterPullConnectionFactoryName">
 jboss.messaging.connectionfactory:service=ClusterPullConnectionFactory
 </attribute>

 <!-- When redistributing messages in the cluster. Do we need to preserve the order of
 messages received
 by a particular consumer from a particular producer? -->

 <attribute name="DefaultPreserveOrdering">false</attribute>

 <!-- Max. time to hold previously delivered messages back waiting for clients to
 reconnect after failover -->

 <attribute name="RecoverDeliveriesTimeout">300000</attribute>

 <attribute name="EnableMessageCounters">false</attribute>

 <!-- The password used by the message sucker connections to create connections.
 THIS SHOULD ALWAYS BE CHANGED AT INSTALL TIME TO SECURE SYSTEM
 <attribute name="SuckerPassword"></attribute>
 -->

 <depends optional-attribute-
name="PersistenceManager">jboss.messaging:service=PersistenceManager</depends>

 <depends optional-attribute-
name="JMSUserManager">jboss.messaging:service=JMSUserManager</depends>

 <depends>jboss.messaging:service=Connector,transport=bisocket</depends>
 <depends optional-attribute-name="SecurityStore" proxy-
type="org.jboss.jms.server.SecurityStore">jboss.messaging:service=SecurityStore</depends>

 </mbean>

3.3.1. ServerPeer attributes
We now discuss the MBean attributes of the ServerPeer MBean.

ServerPeer attributes

11

ServerPeerID
The unique id of the server peer. Every node you deploy MUST have a unique id. This applies whether
the different nodes form a cluster, or are only linked via a message bridge. The id must be a valid
integer between 0 and 1023.

DefaultQueueJNDIContext
The default JNDI context to use when binding queues. Defaults to /queue.

DefaultTopicJNDIContext
The default JNDI context to use when binding topics.wa Defaults to /topic.

PostOffice
This is the post office that the ServerPeer uses. You will not normally need to change this attribute.
The post office is responsible for routing messages to queues and maintaining the mapping between
addresses and queues.

DefaultDLQ
This is the name of the default DLQ (Dead Letter Queue) the server peer will use for destinations.
The DLQ can be overridden on a per destination basis - see the destination MBean configuration for
more details. A DLQ is a special destination where messages are sent when the server has attempted
to deliver them unsuccessfully more than a certain number of times. If the DLQ is not specified at all
then the message will be removed after the maximum number of delivery attempts. The maximum
number of delivery attempts can be specified using the attribute DefaultMaxDeliveryAttempts for a
global default or individually on a per destination basis.

Important

Message-Driven Bean (MDB) and JBoss Messaging (JBM) both have individual DLQ logic. You
will want to be careful which one is processing your undelivered messages as a situation may
occur where a process is expecting MDB DLQ logic to be used however in reality JBM DLQ logic
has been given precedence and thus an error may occur.

DefaultMaxDeliveryAttempts
The default for the maximum number of times delivery of a message will be attempted before sending
the message to the DLQ, if configured.

The default value is 10.

This value can also be overridden on a per destination basis.

DefaultExpiryQueue
This is the name of the default expiry queue the server peer will use for destinations. The expiry can
be overridden on a per destination basis - see the destination MBean configuration for more details.
An expiry queue is a special destination where messages are sent when they have expired. Message
expiry is determined by the value of Message::getJMSExpiration() If the expiry queue is not specified
at all then the message will be removed after it is expired.

Chapter 3. Configuration

12

DefaultRedeliveryDelay
When redelivering a message after failure of previous delivery it is often beneficial to introduce a delay
perform redelivery in order to prevent thrashing of delivery-failure, delivery-failure etc

The default value is 0 which means there will be no delay.

Change this if your application could benefit with a delay before redelivery. This value can also be
overridden on a per destination basis.

MessageCounterSamplePeriod
Periodically the server will query each queue to gets its statistics. This is the period.

The default value is 10000 milliseconds.

FailoverStartTimeout
The maximum number of milliseconds the client will wait for failover to start on the server side when a
problem is detected.

The default value is 60000 (one minute).

FailoverCompleteTimeout
The maximum number of milliseconds the client will wait for failover to complete on the server side
after it has started.

The default value is 300000 (five minutes).

DefaultMessageCounterHistoryDayLimit
JBoss Messaging provides a message counter history which shows the number of messages arriving
on each queue of a certain number of days. This attribute represents the maximum number of days for
which to store message counter history. It can be overridden on a per destination basis.

ClusterPullConnectionFactory
The name of the connection factory to use for pulling messages between nodes.

If you wish to turn off message sucking between queues altogether, but retain failover, then you can
omit this attribute altogether

DefaultPreserveOrdering
If true, then strict JMS ordering is preserved in the cluster. See the cluster configurations section for
more details. Default is false.

RecoverDeliveriesTimeout
When failover occurs, already delivered messages will be kept aside, waiting for clients to reconnect.
In the case that clients never reconnect (e.g. the client is dead) then eventually these messages will
timeout and be added back to the queue. The value is in ms. The default is 5 mins.

EnableMessageCounters
Set this to true to enable message counters when the server starts

ServerPeer attributes

13

SuckerPassword
JBoss Messaging internally makes connections between nodes in order to redistribute messages
between clustered destinations. These connections are made with the user name of a special
reserved user. On this parameter you define the password used as these connections are made. After
JBossMessaging 1.4.1.GA you will need to define the Sucker Password on the ServerPeer and on the
SecurityMetadataStore.

Warning

This must be specified at install time, or the default password will be used. Any one who then
knows the default password will be able to gain access to any destinations on the server. This
value MUST be changed at install time.

SuckerConnectionRetryTimes
Maximum times for a sucker's connection to retry in case of failure. Default is -1 (retry forever)

SuckerConnectionRetryInterval
The interval in milliseconds between each retry of the failed sucker's connection. Default is 5000.

StrictTCK
Set to true if you want strict JMS TCK semantics

Destinations
Returns a list of the destinations (queues and topics) currently deployed.

MessageCounters
JBoss Messaging provides a message counter for each queue.

MessageCountersStatistics
JBoss Messaging provides statistics for each message counter for each queue.

SupportsFailover
Set to false to prevent server side failover occurring in a cluster when a node crashes.

PersistenceManager
This is the persistence manager that the ServerPeer uses. You will not normally need to change this
attribute.

JMSUserManager
This is the JMS user manager that the ServerPeer uses. You will not normally need to change this
attribute.

Chapter 3. Configuration

14

SecurityStore
This is the pluggable SecurityStore. If you redefine this SecurityStore, notice it will need to
authenticate the MessageSucker user ("JBM.SUCKER") with all the special permissions required by
clustering.

SupportsTxAge
Controls whether to store transaction creation time. If set to true, transaction creation time will be
stored in the transaction record. If set to false, transaction creation time won't be recorded. Default is
false.

3.3.2. We now discuss the MBean operations of the ServerPeer
MBean.

DeployQueue
This operation lets you programmatically deploy a queue.

There are two overloaded versions of this operation

If the queue already exists but is undeployed it is deployed. Otherwise it is created and deployed.

The name parameter represents the name of the destination to deploy.

The jndiName parameter (optional) represents the full jndi name where to bind the destination. If this
is not specified then the destination will be bound in <DefaultQueueJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters. The
second overloaded version deploys the destination with the specified paging parameters. See the
section on configuring destinations for a discussion of what the paging parameters mean.

UndeployQueue
This operation lets you programmatically undeploy a queue.

The queue is undeployed but is NOT removed from persistent storage.

This operation returns true if the queue was successful undeployed. otherwise it returns false.

DestroyQueue
This operation lets you programmatically destroy a queue.

The queue is undeployed and then all its data is destroyed from the database.

Warning

Be careful when using this method since it will delete all data for the queue.

This operation returns true if the queue was successfully destroyed. otherwise it returns false.

DeployTopic
This operation lets you programmatically deploy a topic.

We now discuss the MBean operations of the ServerPeer MBean.

15

There are two overloaded versions of this operation.

If the topic already exists but is undeployed it is deployed. Otherwise it is created and deployed.

The name parameter represents the name of the destination to deploy.

The jndiName parameter (optional) represents the full jndi name where to bind the destination. If this
is not specified then the destination will be bound in <DefaultTopicJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters. The
second overloaded version deploys the destination with the specified paging parameters. See the
section on configuring destinations for a discussion of what the paging parameters mean.

UndeployTopic
This operation lets you programmatically undeploy a topic.

The queue is undeployed but is NOT removed from persistent storage.

This operation returns true if the topic was successfully undeployed. otherwise it returns false.

DestroyTopic
This operation lets you programmatically destroy a topic.

The topic is undeployed and then all its data is destroyed from the database.

Warning

Be careful when using this method since it will delete all data for the topic.

This operation returns true if the topic was successfully destroyed. otherwise it returns false.

ListMessageCountersHTML
This operation returns message counters in an easy to display HTML format.

ResetAllMesageCounters
This operation resets all message counters to zero.

ResetAllMesageCounters
This operation resets all message counter histories to zero.

EnableMessageCounters
This operation enables all message counters for all destinations. Message counters are disabled by
default.

DisableMessageCounters
This operation disables all message counters for all destinations. Message counters are disabled by
default.

Chapter 3. Configuration

16

RetrievePreparedTransactions
Retrieves a list of the Xids for all transactions currently in a prepared state on the node.

ShowPreparedTransactions
Retrieves a list of the Xids for all transactions currently in a prepared state on the node in an easy to
display HTML format.

3.3.3. ListAllPreparedTransactions
Display the details of all prepared transactions

3.3.4. ListPreparedTransactions
Display the details of all prepared transactions whose ages are equal to or older than a certain time.

3.3.5. ShowMessageDetails
Display the details of a message. It takes message id as its parameter.

3.3.6. CommitPreparedTransaction
Manually commit a prepared transaction. It takes transaction id as its parameter.

3.3.7. RollbackPreparedTransaction
Manually roll back a prepared transaction. It takes transaction id as its parameter.

3.4. Changing the Database
Several JBoss Messaging services interact with persistent storage. They include: The Persistence
Manager, The PostOffice and the JMS User Manager. The Persistence Manager is used to handle
the message-related persistence. The Post Office handles binding related persistence. The JMS User
manager handles user related persistence The configuration for all these MBeans is handled in the
xxx-persistence-service.xml file.

If the database you want to switch to is one of MySQL, Oracle, PostgreSQL, MS SQL Sever or
Sybase, persistence configuration files are already available in the jboss-as/docs/examples/jms
directory of the release bundle.

In order to enable support for one of these databases, just replace the default hsqldb-
persistence-service.xml configuration file with the database-specific configuration file and
restart the server.

Also, be aware that by default, the Messaging services relying on a datastore are referencing
"java:/DefaultDS" for the datasource. If you are deploying a datasource with a different JNDI
name, you need to update all the DataSource attribute in the persistence configuration file. Example
data source configurations for each of the popular databases are available in the distribution.

3.5. Configuring the Post office
It is the job of the post office to route messages to their destination(s).

The post office maintains the mappings between addresses to which messages can be sent and their
final queues.

Configuring the Post office

17

For example when sending a message with an address that represents a JMS queue name, the post
office will route this to a single queue - the JMS queue. When sending a message with an address
that represents a JMS topic name, the post office will route this to a set of queues - one for each JMS
subscription.

The post office also handles the persistence for the mapping of addresses.

JBoss Messaging post-offices are also cluster aware. In a cluster they will automatically route and pull
messages between them in order to provide fully distributed JMS queues and topics.

The post office configuration is found in the xxx-persistence-service.xml file (where xxx is the name of
your database).

Here is an example of a post office configuration:

 <mbean code="org.jboss.messaging.core.jmx.MessagingPostOfficeService"
 name="jboss.messaging:service=PostOffice"
 xmbean-dd="xmdesc/MessagingPostOffice-xmbean.xml">

 <depends optional-attribute-name="ServerPeer">jboss.messaging:service=ServerPeer</
depends>

 <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

 <depends optional-attribute-
name="TransactionManager">jboss:service=TransactionManager</depends>

 <!-- The name of the post office -->

 <attribute name="PostOfficeName">JMS post office</attribute>

 <!-- The datasource used by the post office to access it's binding information -->

 <attribute name="DataSource">java:/DefaultDS</attribute>

 <!-- If true will attempt to create tables and indexes on every start-up -->

 <attribute name="CreateTablesOnStartup">true</attribute>

 <!-- If true then we will automatically detect and reject duplicate messages sent
 during failover -->

 <attribute name="DetectDuplicates">true</attribute>

 <!-- The size of the id cache to use when detecting duplicate messages -->

 <attribute name="IDCacheSize">500</attribute>

 <attribute name="SqlProperties"><![CDATA[
CREATE_POSTOFFICE_TABLE=CREATE TABLE JBM_POSTOFFICE (POSTOFFICE_NAME VARCHAR(255), NODE_ID
 INTEGER, QUEUE_NAME VARCHAR(255), COND VARCHAR(1023), SELECTOR VARCHAR(1023), CHANNEL_ID
 BIGINT, CLUSTERED CHAR(1), ALL_NODES CHAR(1), PRIMARY KEY(POSTOFFICE_NAME, NODE_ID,
 QUEUE_NAME)) ENGINE = INNODB
INSERT_BINDING=INSERT INTO JBM_POSTOFFICE (POSTOFFICE_NAME, NODE_ID, QUEUE_NAME, COND,
 SELECTOR, CHANNEL_ID, CLUSTERED, ALL_NODES) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
DELETE_BINDING=DELETE FROM JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND NODE_ID=? AND
 QUEUE_NAME=?
LOAD_BINDINGS=SELECT QUEUE_NAME, COND, SELECTOR, CHANNEL_ID, CLUSTERED, ALL_NODES FROM
 JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND NODE_ID=?
]]></attribute>

Chapter 3. Configuration

18

 <!-- This post office is clustered. If you don't want a clustered post office then set
 to false -->

 <attribute name="Clustered">true</attribute>

 <!-- All the remaining properties only have to be specified if the post office is
 clustered.
 You can safely comment them out if your post office is non clustered -->

 <!-- The JGroups group name that the post office will use -->

 <attribute name="GroupName">${jboss.messaging.groupname:MessagingPostOffice}</
attribute>

 <!-- Max time to wait for state to arrive when the post office joins the cluster -->

 <attribute name="StateTimeout">5000</attribute>

 <!-- Max time to wait for a synchronous call to node members using the
 MessageDispatcher -->

 <attribute name="CastTimeout">50000</attribute>

 <!-- Set this to true if you want failover of connections to occur when a node is shut
 down -->

 <attribute name="FailoverOnNodeLeave">false</attribute>

 <!-- JGroups stack configuration for the data channel - used for sending data across
 the cluster -->

 <!-- By default we use the TCP stack for data -->
 <attribute name="DataChannelConfig">
 <config>
 <TCP start_port="7900"
 loopback="true"
 recv_buf_size="20000000"
 send_buf_size="640000"
 discard_incompatible_packets="true"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 down_thread="false" up_thread="false"
 enable_bundling="false"
 use_send_queues="false"
 sock_conn_timeout="300"
 skip_suspected_members="true"/>
 <MPING timeout="4000"
 bind_to_all_interfaces="true"
 mcast_addr="${jboss.messaging.datachanneludpaddress:228.6.6.6}"
 mcast_port="${jboss.messaging.datachanneludpport:45567}"
 ip_ttl="8"
 num_initial_members="2"
 num_ping_requests="1"/>
 <MERGE2 max_interval="100000"
 down_thread="false" up_thread="false" min_interval="20000"/>
 <FD_SOCK down_thread="false" up_thread="false"/>
 <VERIFY_SUSPECT timeout="1500" down_thread="false" up_thread="false"/>
 <pbcast.NAKACK max_xmit_size="60000"
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 down_thread="false" up_thread="false"
 discard_delivered_msgs="true"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

Configuring the Post office

19

 down_thread="false" up_thread="false"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000" shun="false"
 view_bundling="true"/>
 </config>
 </attribute>

 <!-- JGroups stack configuration to use for the control channel - used for control
 messages -->

 <!-- We use udp stack for the control channel -->
 <attribute name="ControlChannelConfig">
 <config>
 <UDP
 mcast_addr="${jboss.messaging.controlchanneludpaddress:228.7.7.7}"
 mcast_port="${jboss.messaging.controlchanneludpport:45568}"
 tos="8"
 ucast_recv_buf_size="20000000"
 ucast_send_buf_size="640000"
 mcast_recv_buf_size="25000000"
 mcast_send_buf_size="640000"
 loopback="false"
 discard_incompatible_packets="true"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 ip_ttl="2"
 down_thread="false" up_thread="false"
 enable_bundling="false"/>
 <PING timeout="2000"
 down_thread="false" up_thread="false" num_initial_members="3"/>
 <MERGE2 max_interval="100000"
 down_thread="false" up_thread="false" min_interval="20000"/>
 <FD_SOCK down_thread="false" up_thread="false"/>
 <FD timeout="10000" max_tries="5" down_thread="false" up_thread="false"
 shun="true"/>
 <VERIFY_SUSPECT timeout="1500" down_thread="false" up_thread="false"/>
 <pbcast.NAKACK max_xmit_size="60000"
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 down_thread="false" up_thread="false"
 discard_delivered_msgs="true"/>
 <UNICAST timeout="300,600,1200,2400,3600"
 down_thread="false" up_thread="false"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 down_thread="false" up_thread="false"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000" use_flush="true"
 flush_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000" shun="false"
 view_bundling="true"/>
 <FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>
 <pbcast.STATE_TRANSFER down_thread="false" up_thread="false" use_flush="true"
 flush_timeout="3000"/>
 <pbcast.FLUSH down_thread="false" up_thread="false" timeout="20000"
 auto_flush_conf="false"/>
 </config>
 </attribute>

 </mbean>

Chapter 3. Configuration

20

3.5.1. Post Office Attributes

DataSource
The datasource the postoffice should use for persisting its mapping data.

SQLProperties
This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

CreateTablesOnStartup
Set this to true if you wish the post office to attempt to create the tables (and indexes) when it starts.
If the tables (or indexes) already exist a SQLException will be thrown by the JDBC driver and
ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

DetectDuplicates
Set this to true if you wish the post office detect duplicate messages that may sent when a send is
retried on a different node after server failure.

By default the value of DetectDuplicates attribute is set to true

IDCacheSize
If duplicate detection is enabled. (See DetectDuplicates), then the server will remember the last
n message ids sent, to prevent duplicate messages sent after failover has occurred. The value of n is
determined by this attribute.

By default the value of IDCacheSize attribute is set to 500

PostOfficeName
The name of the post office.

NodeIDView
This returns set containing the node ids of all the nodes in the cluster.

GroupName
All post offices in the cluster with the same group name will form a cluster together. Make sure the
group name matches with all the nodes in the cluster you want to form a cluster with.

Clustered
If true the post office will take part in a cluster to form distributed queues and topics. If false then it will
not participate in the cluster. If false, then all the cluster related attributes will be ignored.

StateTimeout
The maximum time to wait when waiting for the group state to arrive when a node joins a pre-existing
cluster.

Configuring the Persistence Manager

21

The default value is 5000 milliseconds.

CastTimeout
The maximum time to wait for a reply casting message synchronously.

The default value is 5000 milliseconds.

FailoverOnNodeLeave
If this attribute is true then if a server node is shut down cleanly, then this will cause any connections
on the shutting down node to failover onto another node.

The default value for this is attribute is false

MaxConcurrentReplications
The maximum number of concurrent replication requests to make before blocking for replies to come
back. This prevents us overwhelming JGroups. This is rarely a good reason to change this.

The default value is 50

ControlChannelConfig
JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the control channel.

The control channel is used for sending request/receiving responses from other nodes in the cluster

The details of the JGroups configuration won't be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation or on-
line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

DataChannelConfig
JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the data channel.

The data channel is used for sending sending/receiving messages from other nodes in the cluster and
for replicating session data.

The details of the JGroups configuration won't be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation or on-
line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

3.6. Configuring the Persistence Manager
It is the job of the persistence manager to manage all message related persistence.

JBoss Messaging ships with a JDBC Persistence Manager used for handling persistence of message
data in a relational database accessed via JDBC. The Persistence Manager implementation is
pluggable (the Persistence Manager is a Messaging server plug-in), this making possible to provide
other implementations for persisting message data in non relational stores, file stores etc.

The configuration of "persistent" services is grouped in a xxx-persistence-service.xml
file, where xxx corresponds to the database name. By default, Messaging ships with a hsqldb-
persistence-service.xml, which configures the Messaging server to use the in-VM Hypersonic
database instance that comes by default with any JBossAS instance.

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Chapter 3. Configuration

22

Warning

The default Persistence Manager configuration is works out of the box with Hypersonic, however
it must be stressed that Hypersonic should not be used in a production environment mainly due
to its limited support for transaction isolation and its propensity to behave erratically under high
load.

The Critique of Hypersonic1 wiki page outlines some of the well-known issues occurring when
using this database.

JBoss Messaging also ships with pre-made Persistence Manager configurations for MySQL, Oracle,
PostgreSQL, Sybase and MS SQL Server. The example mysql-persistence-service.xml,
ndb-persistence-service.xml, oracle-persistence-service.xml, postgres-
persistence-service.xml, sybase-persistence-service.xml, mssql-persistence-
service.xml and db2-persistence-service.xml configuration files are available in the
jboss-as/docs/examples/jms directory of the release bundle.

Users are encouraged to contribute their own configuration files where we will thoroughly test them
before certifying them for supported use with JBoss Messaging. The JDBC Persistence Manager
has been designed to use standard SQL for the DML so writing a JDBC Persistence Manager
configuration for another database is usually only a fairly simple matter of changing DDL in the
configuration which is likely to be different for different databases.

JBoss Messaging also ships with a Null Persistence Manager config - this can be used when you don't
want any persistence at all.

The default Hypersonic persistence configuration file is listed below:

 <mbean code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"
 name="jboss.messaging:service=PersistenceManager"
 xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.xml">

 <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

 <depends optional-attribute-
name="TransactionManager">jboss:service=TransactionManager</depends>

 <!-- The datasource to use for the persistence manager -->

 <attribute name="DataSource">java:/DefaultDS</attribute>

 <!-- If true will attempt to create tables and indexes on every start-up -->

 <attribute name="CreateTablesOnStartup">true</attribute>

 <!-- If true then will use JDBC batch updates -->

 <attribute name="UsingBatchUpdates">true</attribute>

 <attribute name="SqlProperties"><![CDATA[
 CREATE_DUAL=CREATE TABLE JBM_DUAL (DUMMY INTEGER, PRIMARY KEY (DUMMY)) ENGINE = INNODB

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB

http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB
http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB

Configuring the Persistence Manager

23

 CREATE_MESSAGE_REFERENCE=CREATE TABLE JBM_MSG_REF (CHANNEL_ID BIGINT, MESSAGE_ID BIGINT,
 TRANSACTION_ID BIGINT, STATE CHAR(1), ORD BIGINT, PAGE_ORD BIGINT, DELIVERY_COUNT INTEGER,
 SCHED_DELIVERY BIGINT, PRIMARY KEY(CHANNEL_ID, MESSAGE_ID)) ENGINE = INNODB
 CREATE_IDX_MESSAGE_REF_TX=CREATE INDEX JBM_MSG_REF_TX ON JBM_MSG_REF (TRANSACTION_ID)
 CREATE_IDX_MESSAGE_REF_ORD=CREATE INDEX JBM_MSG_REF_ORD ON JBM_MSG_REF (ORD)
 CREATE_IDX_MESSAGE_REF_PAGE_ORD=CREATE INDEX JBM_MSG_REF_PAGE_ORD ON JBM_MSG_REF
 (PAGE_ORD)
 CREATE_IDX_MESSAGE_REF_MESSAGE_ID=CREATE INDEX JBM_MSG_REF_MESSAGE_ID ON JBM_MSG_REF
 (MESSAGE_ID)
 CREATE_IDX_MESSAGE_REF_SCHED_DELIVERY=CREATE INDEX JBM_MSG_REF_SCHED_DELIVERY ON
 JBM_MSG_REF (SCHED_DELIVERY)
 CREATE_MESSAGE=CREATE TABLE JBM_MSG (MESSAGE_ID BIGINT, RELIABLE CHAR(1), EXPIRATION
 BIGINT, TIMESTAMP BIGINT, PRIORITY TINYINT, TYPE TINYINT, HEADERS MEDIUMBLOB, PAYLOAD
 LONGBLOB, PRIMARY KEY (MESSAGE_ID)) ENGINE = INNODB
 CREATE_IDX_MESSAGE_TIMESTAMP=CREATE INDEX JBM_MSG_REF_TIMESTAMP ON JBM_MSG (TIMESTAMP)
 CREATE_TRANSACTION=CREATE TABLE JBM_TX (NODE_ID INTEGER, TRANSACTION_ID BIGINT,
 BRANCH_QUAL VARBINARY(254), FORMAT_ID INTEGER, GLOBAL_TXID VARBINARY(254), PRIMARY KEY
 (TRANSACTION_ID)) ENGINE = INNODB
 CREATE_COUNTER=CREATE TABLE JBM_COUNTER (NAME VARCHAR(255), NEXT_ID BIGINT, PRIMARY
 KEY(NAME)) ENGINE = INNODB
 INSERT_DUAL=INSERT INTO JBM_DUAL VALUES (1)
 CHECK_DUAL=SELECT 1 FROM JBM_DUAL
 INSERT_MESSAGE_REF=INSERT INTO JBM_MSG_REF (CHANNEL_ID, MESSAGE_ID, TRANSACTION_ID, STATE,
 ORD, PAGE_ORD, DELIVERY_COUNT, SCHED_DELIVERY) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
 DELETE_MESSAGE_REF=DELETE FROM JBM_MSG_REF WHERE MESSAGE_ID=? AND CHANNEL_ID=? AND
 STATE='C'
 UPDATE_MESSAGE_REF=UPDATE JBM_MSG_REF SET TRANSACTION_ID=?, STATE='-' WHERE MESSAGE_ID=?
 AND CHANNEL_ID=? AND STATE='C'
 UPDATE_PAGE_ORDER=UPDATE JBM_MSG_REF SET PAGE_ORD = ? WHERE MESSAGE_ID=? AND CHANNEL_ID=?
 COMMIT_MESSAGE_REF1=UPDATE JBM_MSG_REF SET STATE='C', TRANSACTION_ID = NULL WHERE
 TRANSACTION_ID=? AND STATE='+'
 COMMIT_MESSAGE_REF2=DELETE FROM JBM_MSG_REF WHERE TRANSACTION_ID=? AND STATE='-'
 ROLLBACK_MESSAGE_REF1=DELETE FROM JBM_MSG_REF WHERE TRANSACTION_ID=? AND STATE='+'
 ROLLBACK_MESSAGE_REF2=UPDATE JBM_MSG_REF SET STATE='C', TRANSACTION_ID = NULL WHERE
 TRANSACTION_ID=? AND STATE='-'
 LOAD_PAGED_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, PAGE_ORD, SCHED_DELIVERY FROM
 JBM_MSG_REF WHERE CHANNEL_ID = ? AND PAGE_ORD BETWEEN ? AND ? ORDER BY PAGE_ORD
 LOAD_UNPAGED_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, SCHED_DELIVERY FROM JBM_MSG_REF WHERE
 STATE = 'C' AND CHANNEL_ID = ? AND PAGE_ORD IS NULL ORDER BY ORD
 LOAD_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, SCHED_DELIVERY FROM JBM_MSG_REF WHERE STATE =
 'C' AND CHANNEL_ID = ? ORDER BY ORD
 UPDATE_REFS_NOT_PAGED=UPDATE JBM_MSG_REF SET PAGE_ORD = NULL WHERE PAGE_ORD BETWEEN ?
 AND ? AND CHANNEL_ID=?
 SELECT_MIN_MAX_PAGE_ORD=SELECT MIN(PAGE_ORD), MAX(PAGE_ORD) FROM JBM_MSG_REF WHERE
 CHANNEL_ID = ?
 SELECT_EXISTS_REF_MESSAGE_ID=SELECT MESSAGE_ID FROM JBM_MSG_REF WHERE MESSAGE_ID = ?
 UPDATE_DELIVERY_COUNT=UPDATE JBM_MSG_REF SET DELIVERY_COUNT = ? WHERE CHANNEL_ID = ? AND
 MESSAGE_ID = ?
 UPDATE_CHANNEL_ID=UPDATE JBM_MSG_REF SET CHANNEL_ID = ? WHERE CHANNEL_ID = ?
 LOAD_MESSAGES=SELECT MESSAGE_ID, RELIABLE, EXPIRATION, TIMESTAMP, PRIORITY, HEADERS,
 PAYLOAD, TYPE FROM JBM_MSG
 INSERT_MESSAGE=INSERT INTO JBM_MSG (MESSAGE_ID, RELIABLE, EXPIRATION, TIMESTAMP, PRIORITY,
 TYPE, HEADERS, PAYLOAD) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
 INSERT_MESSAGE_CONDITIONAL=INSERT INTO JBM_MSG (MESSAGE_ID, RELIABLE, EXPIRATION,
 TIMESTAMP, PRIORITY, TYPE, INST_TIME) SELECT ?, ?, ?, ?, ?, ?, ? FROM JBM_DUAL WHERE NOT
 EXISTS (SELECT MESSAGE_ID FROM JBM_MSG WHERE MESSAGE_ID = ?)
 UPDATE_MESSAGE_4CONDITIONAL=UPDATE JBM_MSG SET HEADERS=?, PAYLOAD=? WHERE MESSAGE_ID=?
 INSERT_MESSAGE_CONDITIONAL_FULL=INSERT INTO JBM_MSG (MESSAGE_ID, RELIABLE, EXPIRATION,
 TIMESTAMP, PRIORITY, TYPE, HEADERS, PAYLOAD) SELECT ?, ?, ?, ?, ?, ?, ?, ? FROM JBM_DUAL
 WHERE NOT EXISTS (SELECT MESSAGE_ID FROM JBM_MSG WHERE MESSAGE_ID = ?)
 MESSAGE_ID_COLUMN=MESSAGE_ID
 DELETE_MESSAGE=DELETE FROM JBM_MSG WHERE MESSAGE_ID = ? AND NOT EXISTS (SELECT * FROM
 JBM_MSG_REF WHERE JBM_MSG_REF.MESSAGE_ID = ?)
 INSERT_TRANSACTION=INSERT INTO JBM_TX (NODE_ID, TRANSACTION_ID, BRANCH_QUAL, FORMAT_ID,
 GLOBAL_TXID) VALUES(?, ?, ?, ?, ?)
 DELETE_TRANSACTION=DELETE FROM JBM_TX WHERE NODE_ID = ? AND TRANSACTION_ID = ?

Chapter 3. Configuration

24

 SELECT_PREPARED_TRANSACTIONS=SELECT TRANSACTION_ID, BRANCH_QUAL, FORMAT_ID, GLOBAL_TXID
 FROM JBM_TX WHERE NODE_ID = ?
 SELECT_MESSAGE_ID_FOR_REF=SELECT MESSAGE_ID, CHANNEL_ID FROM JBM_MSG_REF WHERE
 TRANSACTION_ID = ? AND STATE = '+' ORDER BY ORD
 SELECT_MESSAGE_ID_FOR_ACK=SELECT MESSAGE_ID, CHANNEL_ID FROM JBM_MSG_REF WHERE
 TRANSACTION_ID = ? AND STATE = '-' ORDER BY ORD
 UPDATE_COUNTER=UPDATE JBM_COUNTER SET NEXT_ID = ? WHERE NAME=?
 SELECT_COUNTER=SELECT NEXT_ID FROM JBM_COUNTER WHERE NAME=? FOR UPDATE
 INSERT_COUNTER=INSERT INTO JBM_COUNTER (NAME, NEXT_ID) VALUES (?, ?)
 SELECT_ALL_CHANNELS=SELECT DISTINCT(CHANNEL_ID) FROM JBM_MSG_REF
 UPDATE_TX=UPDATE JBM_TX SET NODE_ID=? WHERE NODE_ID=?
]]></attribute>

 <!-- The maximum number of parameters to include in a prepared statement -->

 <attribute name="MaxParams">500</attribute>

 <attribute name="UseNDBFailoverStrategy">true</attribute>

 </mbean>

3.6.1. Important notes for Sybase and Microsoft SQL Server users
When a database is created in Sybase the maximum size of text and image datatypes is set to the
default page size of 2 KB. Any longer message payload is truncated without any information or
warning. The database parameters have to be updated to set the @@TEXTSIZE parameter to a
higher value. The truncation behavior may also be observed in MSSQL Server if @@TEXTSIZE is
changed from its default value to a smaller one. Further information: http://jira.jboss.com/jira/browse/
SOA-554.

Sybase database may fail to insert a row if the total size of the row exceeds the page size allocated for
the database. A command line option passed to the dataserver command used to start the database
can be used to change the page size. Further information: http://jira.jboss.com/jira/browse/SOA-553

Microsoft SQL Server does not automatically de-allocate the hard-drive space occupied by data
in a database when that data is deleted. If used as a data-store for services that temporarily store
many records, such as a messaging service, the disk space used will grow to be much greater than
the amount of data actually being stored. Your database administrator should implement database
maintenance plans to ensure that unused space is reclaimed. Please refer to your Microsoft SQL
Server documentation for the DBCC commands ShrinkDatabase and UpdateUsage for guidance.
https://jira.jboss.org/jira/browse/SOA-629

3.6.2. PersistenceManager MBean Attributes

CreateTablesOnStartup
Set this to true if you wish the Persistence Manager to attempt to create the tables (and indexes)
when it starts. If the tables (or indexes) already exist a SQLException will be thrown by the JDBC
driver and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

UsingBatchUpdates
Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager will
then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

http://jira.jboss.com/jira/browse/SOA-554
http://jira.jboss.com/jira/browse/SOA-554
http://jira.jboss.com/jira/browse/SOA-553
https://jira.jboss.org/jira/browse/SOA-629

Configuring the JMS user manager

25

UsingBinaryStream
Set this to true if you want messages to be store and read using a JDBC binary stream rather than
using getBytes(), setBytes(). Some database has limits on the maximum number of bytes that can be
get/set using getBytes()/setBytes().

By default the value of UsingBinaryStream attribute is set to true

UsingTrailingByte
Certain version of Sybase are known to truncate blobs if they have trailing zeros. To prevent this if this
attribute is set to true then a trailing non zero byte will be added and removed to each blob before
and after persistence to prevent the database from truncating it. Currently this is only known to be
necessary for Sybase.

By default the value of UsingTrailingByte attribute is set to false

SupportsBlobOnSelect
Oracle (and possibly other databases) is known to not allow BLOBs to be inserted using a INSERT
INTO ... SELECT FROM statement, and requires a two stage conditional insert of messages. If this
value is false then such a two stage insert will be used.

By default the value of SupportsBlobOnSelect attribute is set to true

SQLProperties
This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

MaxParams
When loading messages the persistence manager will generate prepared statements with many
parameters. This value tells the persistence manager what the absolute maximum number of
parameters are allowable per prepared statement.

By default the value of MaxParams attribute is set to 100

UseNDBFailoverStrategy
When running in a clustered database environment it is possible that some databases, MySQL for
instance, can fail during the commit of a database transaction. This can happen if the database node
dies whilst committing meaning that the final state of the transaction is unknown. If this attribute is
set to true and the above happens then the SQL statement will be re-executed, however if there
is a further error an assumption is made that this is because the previous transaction committed
successfully and the error is ignored.

By default the value of UseNDBFailoverStrategy attribute is set to false

3.7. Configuring the JMS user manager
The JMS user manager handles the mapping of pre-configured client IDs to users and also managers
the user and role tables which may or may not be used depending on which login module you have
configured

Here is an example JMSUserManager configuration

Chapter 3. Configuration

26

 <mbean code="org.jboss.jms.server.plugin.JDBCJMSUserManagerService"
 name="jboss.messaging:service=JMSUserManager"
 xmbean-dd="xmdesc/JMSUserManager-xmbean.xml">
 <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager
 </depends>
 <attribute name="DataSource">java:/DefaultDS</attribute>
 <attribute name="CreateTablesOnStartup">true</attribute>
 <attribute name="SqlProperties"><![CDATA[
 CREATE_USER_TABLE=CREATE TABLE JBM_USER (USER_ID VARCHAR(32) NOT NULL,
 PASSWD VARCHAR(32) NOT NULL, CLIENTID VARCHAR(128),
 PRIMARY KEY(USER_ID)) ENGINE = INNODB
 CREATE_ROLE_TABLE=CREATE TABLE JBM_ROLE (ROLE_ID VARCHAR(32) NOT NULL,
 USER_ID VARCHAR(32) NOT NULL, PRIMARY KEY(USER_ID, ROLE_ID))
 ENGINE = INNODB
 SELECT_PRECONF_CLIENTID=SELECT CLIENTID FROM JBM_USER WHERE USER_ID=?
 POPULATE.TABLES.1=INSERT INTO JBM_USER (USER_ID,PASSWD,CLIENTID)
 VALUES ('dilbert','dogbert','dilbert-id')
]]></attribute>
 </mbean>

3.7.1. JMSUserManager MBean Attributes

CreateTablesOnStartup
Set this to true if you wish the JMS user manager to attempt to create the tables (and indexes) when
it starts. If the tables (or indexes) already exist a SQLException will be thrown by the JDBC driver
and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

UsingBatchUpdates
Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager will
then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

SQLProperties
This is where the DDL and DML for the particular database is specified. If a particular DDL or DML
statement is not overridden, the default Hypersonic configuration will be used for that statement.

Default user and role data can also be specified here. Any data to be inserted must be specified with
property names starting with POPULATE.TABLES as in the above example.

3.8. Configuring Destinations

3.8.1. Pre-configured destinations
JBoss Messaging ships with a default set of pre-configured destinations that will be deployed during
the server start up. The file that contains configuration for these destinations is destinations-
service.xml. A section of this file is listed below:

 <!--

Pre-configured destinations

27

 The Default Dead Letter Queue. This destination is a dependency of an EJB MDB
 container.
 -->

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=DLQ"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.TopicService"
 name="jboss.messaging.destination:service=Topic,name=testTopic"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true" create="false"/>
 <role name="durpublisher" read="true" write="true" create="true"/>
 </security>
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.TopicService"
 name="jboss.messaging.destination:service=Topic,name=securedTopic"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="publisher" read="true" write="true" create="false"/>
 </security>
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=testQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true" create="false"/>
 <role name="noacc" read="false" write="false" create="false"/>
 </security>
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=A"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>

Chapter 3. Configuration

28

 <depends>jboss.messaging:service=PostOffice</depends>
 </mbean>

 <!-- It's possible for indiviual queues and topics to use a specific queue for
 an expiry or DLQ -->

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=PrivateDLQ"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=QueueWithOwnDLQAndExpiryQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="DLQ">
 jboss.messaging.destination:service=Queue,name=PrivateDLQ
 </attribute>
 <attribute name="ExpiryQueue">
 jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.TopicService"
 name="jboss.messaging.destination:service=Topic,name=TopicWithOwnDLQAndExpiryQueue"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="DLQ">
 jboss.messaging.destination:service=Queue,name=PrivateDLQ
 </attribute>
 <attribute name="ExpiryQueue">
 jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue
 </attribute>
 </mbean>

 <mbean code="org.jboss.jms.server.destination.TopicService"
 name="jboss.messaging.destination:service=Topic,name=TopicWithOwnRedeliveryDelay"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="RedeliveryDelay">5000</attribute>
 </mbean>

Configuring queues

29

 <mbean code="org.jboss.jms.server.destination.TopicService"
 name="jboss.messaging.destination:service=Topic,name=testDistributedTopic"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="Clustered">true</attribute>
 </mbean>
....

3.9. Configuring queues

3.9.1. Queue MBean Attributes

Name
The name of the queue

JNDIName
The JNDI name where the queue is bound

DLQ
The DLQ used for this queue. Overrides any value set on the ServerPeer config

ExpiryQueue
The Expiry queue used for this queue. Overrides any value set on the ServerPeer config

RedeliveryDelay
The redelivery delay to be used for this queue. Overrides any value set on the ServerPeer config

MaxDeliveryAttempts
The maximum number of times delivery of a message will be attempted before sending the message
to the DLQ, if configured. If set to -1 (the default), the value from the ServerPeer config is used. Any
other setting overrides the value set on the ServerPeer config.

Destination Security Configuration
SecurityConfig - allows you to determine which roles are allowed to read, write and create on the
destination. It has exactly the same syntax and semantics as the security configuration in JBossMQ
destinations.

The SecurityConfig element should contain one <security> element. The <security>
element can contain multiple <role> elements. Each <role> element defines the access for that
particular role.

If the read attribute is true then that role will be able to read (create consumers, receive messages
or browse) this destination.

If the write attribute is true then that role will be able to write (create producers or send messages)
to this destination.

Chapter 3. Configuration

30

If the create attribute is true then that role will be able to create durable subscriptions on this
destination.

Note that the security configuration for a destination is optional. If a SecurityConfig element is not
specified then the default security configuration from the Server Peer will be used.

Destination paging parameters
'Pageable Channels' are a sophisticated new feature available in JBoss Messaging.

If your application needs to support very large queues or subscriptions containing potentially millions
of messages, then it's not possible to store them all in memory at once.

JBoss Messaging solves this problem but letting you specify the maximum number of messages
that can be stored in memory at any one time, on a queue-by-queue, or topic-by-topic basis. JBoss
Messaging then pages messages to and from storage transparently in blocks, allowing queues
and subscriptions to grow to very large sizes without any performance degradation as channel size
increases.

This has been tested with in excess of 10 million 2K messages on very basic hardware and has the
potential to scale to much larger number of messages.

The individual parameters are:

FullSize - this is the maximum number of messages held by the queue or topic subscriptions in
memory at any one time. The actual queue or subscription can hold many more messages than this
but these are paged to and from storage as necessary as messages are added or consumed. If no
value is specified, the default is 75000.

PageSize - When loading messages from the queue or subscription this is the maximum number of
messages to pre-load in one operation. If no value is specified, the default is 2000.

DownCacheSize - When paging messages to storage from the queue they first go into a "Down
Cache" before being written to storage. This enables the write to occur as a single operation thus
aiding performance. This setting determines the max number of messages that the Down Cache will
hold before they are flushed to storage. If no value is specified, the default is 2000.

If you want to specify the paging parameters used for temporary queues then you need to specify
them on the appropriate connection factory. See connection factory configuration for details.

Warning - Large Values in Destination Paging Parameters

Configuring large values in destination paging parameters can cause OutOfMemory exceptions
when used with JDBC driver versions greater than 11.1.0.7.0 and Oracle 11g R1, Oracle 11g
R2, Oracle RAC 11g R1 and Oracle RAC 11g R2. For more information, refer to JBPAPP-5420
and JBPAPP-5423 in the Known Issues section of the JBoss Enterprise Application Platform 4.3
Release Notes CP092.

2 http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/
index.html

http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html

Queue MBean Attributes

31

CreatedProgrammatically
Returns true if the queue was created programmatically

MessageCount
Returns the total number of messages in the queue = number not being delivered + number being
delivered + number being scheduled

ScheduledMessageCount
Returns the number of scheduled messages in the queue. This is the number of messages scheduled
to be delivered at a later date.

Scheduled delivery is a feature of JBoss Messaging where you can send a message and specify the
earliest time at which it will be delivered. E.g. you can send a message now, but the message won't
actually be delivered until 2 hours time.

To do this, you just need to set the following header in the message before sending:

 long now = System.currentTimeMillis();

 Message msg = sess.createMessage();

 msg.setLongProperty(JBossMessage.JMS_JBOSS_SCHEDULED_DELIVERY_PROP_NAME,
 now + 1000 * 60 * 60 * 2);

 prod.send(msg);

MaxSize
A maximum size (in number of messages) can be specified for a queue. Any messages that arrive
beyond this point will be dropped. The default is -1 which is unbounded.

Clustered
Clustered destinations must have this set to true.

MessageCounter
Each queue maintains a message counter.

MessageStatistics
The statistics for the message counter

MessageCounterHistoryDayLimit
The maximum number of days to hold message counter history for. Overrides any value set on the
ServerPeer.

ConsumerCount
The number of consumers currently consuming from the queue.

Chapter 3. Configuration

32

3.9.2. DropOldMessageOnRedeploy
When you re-deploy a queue service with a clustered attribute different from the one with which it
has been previously deployed, all remaining messages in the queue will be deleted after the re-
deployment if you set this parameter to true. Otherwise the messages will be reserved. Default is
false.

Warning

When you re-deploy a destination, you need to shut down all the nodes in the cluster, make
proper configuration change and then restart the nodes. Redeploying from a non-clustered queue
to a clustered one requires you set the Clustered attribute to true, and add the queue service
configuration to each node. Redeploying from a clustered queue to a non-clustered requires you
set the Clustered attribute to false in one of the queue configurations and delete all others in the
cluster.

3.9.3. We now discuss the MBean operations of the Queue MBean

RemoveAllMessages
Remove (and delete) all messages from the queue.

Warning

Use this with caution. It will permanently delete all messages from the queue.

ListAllMessages
List all messages currently in the queue

There are two overloaded versions of this operation: One takes a JMS selector as an argument, the
other does not. By using the selector you can retrieve a subset of the messages in the queue that
match the criteria

ListDurableMessages
As listAllMessages but only lists the durable messages

There are two overloaded versions of this operation: One takes a JMS selector as an argument, the
other does not. By using the selector you can retrieve a subset of the messages in the queue that
match the criteria

ListNonDurableMessages
As listAllMessages but only lists the non durable messages

There are two overloaded versions of this operation: One takes a JMS selector as an argument, the
other does not. By using the selector you can retrieve a subset of the messages in the queue that
match the criteria

Configuring topics

33

ResetMessageCounter
Resets the message counter to zero.

ResetMessageCounterHistory
Resets the message counter history.

ListMessageCounterAsHTML
Lists the message counter in an easy to display HTML format

ListMessageCounterHistoryAsHTML
Lists the message counter history in an easy to display HTML format

3.10. Configuring topics

3.10.1. Topic MBean Attributes

Name
The name of the topic

JNDIName
The JNDI name where the topic is bound

DLQ
The DLQ used for this topic. Overrides any value set on the ServerPeer config

ExpiryQueue
The Expiry queue used for this topic. Overrides any value set on the ServerPeer config

RedeliveryDelay
The redelivery delay to be used for this topic. Overrides any value set on the ServerPeer config

MaxDeliveryAttempts
The maximum number of times delivery of a message will be attempted before sending the message
to the DLQ, if configured. If set to -1 (the default), the value from the ServerPeer config is used. Any
other setting overrides the value set on the ServerPeer config.

Destination Security Configuration
SecurityConfig - allows you to determine which roles are allowed to read, write and create on the
destination. It has exactly the same syntax and semantics as the security configuration in JBossMQ
destinations.

The SecurityConfig element should contain one <security> element. The <security>
element can contain multiple <role> elements. Each <role> element defines the access for that
particular role.

Chapter 3. Configuration

34

If the read attribute is true then that role will be able to read (create consumers, receive messages
or browse) this destination.

If the write attribute is true then that role will be able to write (create producers or send messages)
to this destination.

If the create attribute is true then that role will be able to create durable subscriptions on this
destination.

Note that the security configuration for a destination is optional. If a SecurityConfig element is not
specified then the default security configuration from the Server Peer will be used.

Destination paging parameters
'Pageable Channels' are a sophisticated new feature available in JBoss Messaging.

If your application needs to support very large queues or subscriptions containing potentially millions
of messages, then it's not possible to store them all in memory at once.

JBoss Messaging solves this problem but letting you specify the maximum number of messages
that can be stored in memory at any one time, on a queue-by-queue, or topic-by-topic basis. JBoss
Messaging then pages messages to and from storage transparently in blocks, allowing queues
and subscriptions to grow to very large sizes without any performance degradation as channel size
increases.

This has been tested with in excess of 10 million 2K messages on very basic hardware and has the
potential to scale to much larger number of messages.

The individual parameters are:

FullSize - this is the maximum number of messages held by the queue or topic subscriptions in
memory at any one time. The actual queue or subscription can hold many more messages than this
but these are paged to and from storage as necessary as messages are added or consumed.

Warning - Large Values in Destination Paging Parameters

Configuring large values in destination paging parameters can cause OutOfMemory exceptions
when used with JDBC driver version 11.1.0.7.0 and Oracle 11g R1, Oracle 11g R2, Oracle RAC
11g R1 and Oracle RAC 11g R2. For more information, refer to JBPAPP-5423 in the Known
Issues section of the JBoss Enterprise Application Platform 4.3 Release Notes CP093.

PageSize - When loading messages from the queue or subscription this is the maximum number of
messages to pre-load in one operation.

DownCacheSize - When paging messages to storage from the queue they first go into a "Down
Cache" before being written to storage. This enables the write to occur as a single operation thus
aiding performance. This setting determines the max number of messages that the Down Cache will
hold before they are flushed to storage.

3 http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/
index.html

http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/4.3/html-single/Release_Notes_CP09/index.html

Topic MBean Attributes

35

If no values for FullSize, PageSize, or DownCacheSize are specified they will default to values
75000, 2000, 2000 respectively.

If you want to specify the paging parameters used for temporary queues then you need to specify
them on the appropriate connection factory. See connection factory configuration for details.

CreatedProgrammatically
Returns true if the topic was created programmatically

MaxSize
A maximum size (in number of messages) can be specified for a topic subscription. Any messages
that arrive beyond this point will be dropped. The default is -1 which is unbounded.

Clustered
Clustered destinations must have this set to true

MessageCounterHistoryDayLimit
The maximum number of days to hold message counter history for. Overrides any value set on the
ServerPeer.

MessageCounters
Return a list of the message counters for the subscriptions of this topic.

AllMessageCount
Return the total number of messages in all subscriptions of this topic.

DurableMessageCount
Return the total number of durable messages in all subscriptions of this topic.

NonDurableMessageCount
Return the total number of non durable messages in all subscriptions of this topic.

AllSubscriptionsCount
The count of all subscriptions on this topic

DurableSubscriptionsCount
The count of all durable subscriptions on this topic

NonDurableSubscriptionsCount
The count of all non durable subscriptions on this topic

DropOldMessageOnRedeploy
When you re-deploy a topic service with a clustered attribute different from the one with which it has
been previously deployed, all remaining messages of its durable subscribers will be deleted after the

Chapter 3. Configuration

36

re-deployment if you set this parameter to true. Otherwise the messages will be reserved. Default is
false.

Warning

When you re-deploy a destination, you need to shut down all the nodes in the cluster, make
proper configuration change and then restart the nodes. Redeploying from a non-clustered topic
to a clustered one requires you set the Clustered attribute to true, and add the topic service
configuration to each node. Redeploying from a clustered topic to a non-clustered one requires
you set the Clustered attribute to false in one of the topic configurations and delete all others in
the cluster.

3.10.2. We now discuss the MBean operations of the Topic MBean

RemoveAllMessages
Remove (and delete) all messages from the subscriptions of this topic.

Warning

Use this with caution. It will permanently delete all messages from the topic.

ListAllSubscriptions
List all subscriptions of this topic

ListDurableSubscriptions
List all durable subscriptions of this topic

ListNonDurableSubscriptions
List all non durable subscriptions of this topic

ListAllSubscriptionsAsHTML
List all subscriptions of this topic in an easy to display HTML format

ListDurableSubscriptionsAsHTML
List all durable subscriptions of this topic in an easy to display HTML format

ListNonDurableSubscriptionsAsHTML
List all non durable subscriptions of this topic in an easy to display HTML format

ListAllMessages
Lists all messages for the specified subscription.

Configuring Connection Factories

37

There are two overloaded versions of this operation. One that takes a selector and one that does not.
By specifying the selector you can limit the messages returned.

ListNonDurableMessages
Lists all non durable messages for the specified subscription.

There are two overloaded versions of this operation. One that takes a selector and one that does not.
By specifying the selector you can limit the messages returned.

ListDurableMessages
Lists all durable messages for the specified subscription.

There are two overloaded versions of this operation. One that takes a selector and one that does not.
By specifying the selector you can limit the messages returned.

3.11. Configuring Connection Factories
With the default configuration JBoss Messaging binds two connection factories in JNDI at start-up.

The first connection factory is the default non-clustered connection factory and is bound into
the following JNDI contexts: /ConnectionFactory, /XAConnectionFactory, java:/
ConnectionFactory, java:/XAConnectionFactory. This connection factory is provided to
maintain compatibility with applications originally written against JBoss MQ which has no automatic
failover or load balancing. This connection factory should be used if you do not require client side
automatic failover or load balancing.

The second connection factory is the default clustered connection factory and is
bound into the following JNDI contexts /ClusteredConnectionFactory, /
ClusteredXAConnectionFactory, java:/ClusteredConnectionFactory, java:/
ClusteredXAConnectionFactory.

You may want to configure additional connection factories, for instance if you want to provide a
default client id for a connection factory, or if you want to bind it in different places in JNDI, if you
want different connection factories to use different transports, or if you want to selective enable or
disable load-balancing and/or automatic failover for a particular connection factory. Deploying a
new connection factory is equivalent with adding a new ConnectionFactory MBean configuration to
connection-factories-service.xml.

It is also possible to create an entirely new service deployment descriptor xxx-service.xml
altogether and deploy it in $JBOSS_HOME/server/<your profile>/deploy.

Connection factories can support automatic failover and/or load-balancing by setting the
corresponding attributes

An example connection factory configuration is presented below:

<mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
 name="jboss.messaging.connectionfactory:service=MyConnectionFactory"
 xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends optional-attribute-name="Connector">
 jboss.messaging:service=Connector,transport=bisocket
 </depends>

Chapter 3. Configuration

38

 <depends>jboss.messaging:service=PostOffice</depends>

 <attribute name="JNDIBindings">
 <bindings>
 <binding>/MyConnectionFactory</binding>
 <binding>/factories/cf</binding>
 </bindings>
 </attribute>

 <attribute name="ClientID">myClientID</attribute>

 <attribute name="SupportsFailover">true</attribute>

 <attribute name="SupportsLoadBalancing">false</attribute>

 <attribute name="LoadBalancingFactory">org.acme.MyLoadBalancingFactory</attribute>

 <attribute name="PrefetchSize">1000</attribute>

 <attribute name="SlowConsumers">false</attribute>

 <attribute name="StrictTck">true</attribute>

 <attribute name="SendAcksAsync">false</attribute>

 <attribute name="DefaultTempQueueFullSize">50000</attribute>

 <attribute name="DefaultTempQueuePageSize">1000</attribute>

 <attribute name="DefaultTempQueueDownCacheSize">1000</attribute>

 <attribute name="DupsOKBatchSize">10000</attribute>
 </mbean>

The above example would create a connection factory with pre-configured client ID myClientID
and bind the connection factory in two places in the JNDI tree: /MyConnectionFactory
and /factories/cf. The connection factory overrides the default values for PreFetchSize,
DefaultTempQueueFullSize, DefaultTempQueuePageSize, DefaultTempQueueDownCacheSize
and DupsOKBatchSize, SupportsFailover, SupportsLoadBalancing and LoadBalancingFactory. The
connection factory will use the default remoting connector. To use a different remoting connector with
the connection factory change the Connector attribute to specify the service name of the connector
you wish to use.

3.11.1. We now discuss the MBean attributes of the
ConnectionFactory MBean
ClientID

Connection factories can be pre-configured with a client id. Any connections created using this
connection factory will obtain this client id

JNDIBindings
The list of the JNDI bindings for this connection factory

PrefetchSize
This parameter specifies the window size in numbers of messages, for consumer flow control.
The window size determines the number of messages a server can send to a consumer without
blocking. Each consumer maintains a buffer of messages from which it consumes. Please note
that TCP also implements its own flow control, so if you set this to too large a number, then the
TCP window size may be hit before the prefetchSize, which can cause writes to block.

We now discuss the MBean attributes of the ConnectionFactory MBean

39

SlowConsumers
If you have very slow consumers, then you probably want to reduce the number of messages
they buffer so that unnecessary buffering does not prevent the messages from being consumed
by faster consumers. The lowest PrefetchSize allowed is 1. Setting SlowConsumers to true is
equivalent to setting PrefetchSize to 1

StrictTck
Set this to true if you want strict JMS behavior as required by the TCK.

SendAcksAsync
Set this to true if you want acknowledgments to be sent asynchronously. This can speed up
performance especially if you are using auto_acknowledge mode

DefaultTempQueueFullSize, DefaultTempQueuePageSize, DefaultTempQueueDownCacheSize
Optional attributes that determine the default paging parameters to be used for any temporary
destinations scoped to connections created using this connection factory. See the section on
paging channels for more information on what these values mean. They will default to values of
200000, 2000 and 2000 respectively if omitted.

DupsOKBatchSize
When using a session with acknowledge mode of DUPS_OK_ACKNOWLEDGE this setting
determines how many acknowledgments it will buffer locally before sending. The default value is
2000

SupportsLoadBalancing
When using a connection factory with a clustered JBoss Messaging installation you can choose
whether to enable client side connection load-balancing. This is determined by setting the attribute
supportsLoadBalancing on the connection factory.

If load balancing is enabled on a connection factory then any connections created with that
connection factory will be load-balanced across the nodes of the cluster. Once a connection is
created on a particular node, it stays on that node.

The exact policy that determines how connections are load balanced is determined by the
LoadBalancingFactory attribute

The default value is false

SupportsFailover
When using a connection factory with a clustered JBoss Messaging installation you can choose
whether to enable client side automatic failover. This is determined by setting the attribute
supportsFailover on the connection factory.

If automatic failover is enabled on a connection factory, then if a connection problem is detected
with the connection then JBoss Messaging will automatically and transparently failover to another
node in the cluster.

The failover is transparent meaning the user can carry on using the sessions, consumers,
producers and connection objects as before.

If automatic failover is not required, then this attribute can be set to false. With automatic failover
disabled it is up to the user code to catch connection exceptions in synchronous JMS operations
and install a JMS ExceptionListener to catch exceptions asynchronously. When a connection is
caught, the client side code should lookup a new connection factory using HAJNDI and recreate
the connection using that.

The default value is false

Chapter 3. Configuration

40

DisableRemotingChecks
By default, when deploying a connection factory, JBoss Messaging checks that the corresponding
JBoss Remoting Connector has "sensible" values. JBoss Messaging is very sensitive to the
values and for many of them there's rarely a good reason to change them. To disable such sanity
checking set this to false.

The default value is false

Warning

There is rarely a good reason to disable checking. Only do so if you are absolutely sure in
what you are doing.

LoadBalancingFactory
If you are using a connection factory with client side load balancing then you can specify how the
load balancing is implemented by overriding this attribute. The value must correspond to the name
of a class which implements the interface org.jboss.jms.client.plugin.LoadBalancingFactory

The default value is org.jboss.jms.client.plugin.RoundRobinLoadBalancingFactory, which load
balances connections across the cluster in a round-robin fashion

Connector
This specifies which remoting connector this connection factory uses. Different connection
factories can use different connectors.

For instance you could deploy one connection factory that creates connections that use the HTTP
transport to communicate to the server and another that creates connections that use the bisocket
transport to communicate.

EnableOrderingGroup
Specifies whether strict message ordering is enabled on the ConnectionFactory. If set to 'true', all
messages that are sent from any producers created from this connection factory become ordering
group messages.

The default value is false.

DefaultOrderingGroupName
Specifies the name for the message ordering group. If absent, the group name is generated
automatically. This attribute takes effect only if the EnableOrderingGroup attribute is true.

MaxRetryChangeRate
Maximum attempts to retry sending change rate message for a consumer.

The valid values for this attribute are 0 (default, no retry), -1 (retry forever), and any positive long
type number. MaxRetryChangeRate is used together with attribute RetryChangeRateInterval to
alleviate issues with .

With this parameter, the client can retry sending of the changeRate messages in case of failure to
alleviate temporary network disturbances.

A JMS client can inform the JMS server to deliver more messages to it when there is no more
messages in the client buffer, by sending a changeRate message to the server. If the changeRate
message does not reach the server due to a temporary network disturbance, the server will not

EnableOrderingGroup

41

start delivering messages to the client. The client receives no more messages, regardless of the
message queue at the server.

RetryChangeRateInterval
Interval (in milliseconds) between two attempts of retrying to send change rate message. Default
is 5000. This attribute takes effect if the MaxRetryChangeRate attribute is not 0 (default, no retry).

MinTimeoutProcessTime
Minimum processing time (in milliseconds) allowed for a timeout receive. This is the minimum
internal processing time after a message has arrived at the client, but before the message is
returned to the application.

The default is 300.

Important - AUTO_ACKNOWLEDGE and timeout values

Messages may be discarded when the following conditions present:

• the consumer session is using AUTO_ACKNOWLEDGE

• the session timeout for the receive method expires at the exact moment the message is
received at the client buffer.

• the server does not acknowledge message receipt at the client buffer.

An exception similar to this example is shown: javax.jms.JMSException: Timed
out before post message processing, discarding message delegator-
>JBossMessage[23357322686633840]ERSISTENT, deliveryId=0 at
org.jboss.jms.client.container.ClientConsumer.receive(ClientConsumer.java:596)

This situation can occur when the message receive timeout is set too low. To avoid this
scenario, use CLIENT_ACKNOWLEDGE mode in consumer sessions.

3.11.2. EnableOrderingGroup
This parameter controls whether the strict message ordering is enabled or not on the
ConnectionFactory. If set to 'true', all messages that are sent from any producers created from this
connection factory become ordering group messages.

The default value is false.

3.11.3. DefaultOrderingGroupName
the default name for the message ordering group. If absent, the group name will be generated
automatically.

This attribute takes effect only if the EnableOrderingGroup attribute is true.

3.12. Configuring the remoting connector
JBoss Messaging uses JBoss Remoting for all client to server communication. For full details of
what JBoss Remoting is capable of and how it is configured please consult the JBoss Remoting
documentation.

Chapter 3. Configuration

42

The default configuration includes a single remoting connector which is used by the single default
connection factory. Each connection factory can be configured to use its own connector.

The default connector is configured to use the remoting bisocket transport. The bisocket transport
is a TCP socket based transport which only listens and accepts connections on the server side.
I.e. connections are always initiated from the client side. This means it works well in typical firewall
scenarios where only inbound connections are allowed on the server. Or where only outbound
connections are allowed from the client.

The bisocket transport can be configured to use SSL where a higher level of security is required.

The other supported transport is the HTTP transport. This uses the HTTP protocol to communicate
between client and server. Data is received on the client by the client periodically polling the server
for messages. This transport is well suited to situations where there is a firewall between client and
server which only allows incoming HTTP traffic on the server. Please note this transport will not be as
performant as the bisocket transport due to the nature of polling and the HTTP protocl. Also please
note it is not designed for high load situations.

No other remoting transports are currently supported by JBoss Messaging

You can look at remoting configuration under:

<JBoss>/server/<YourMessagingServer>/deploy/jboss-messaging.sar/remoting-bisocket-service.xml

Here is an example bisocket remoting configuration:

 <config>
 <invoker transport="bisocket">

 <!-- There should be no reason to change these parameters - warning!
 Changing them may stop JBoss Messaging working correctly -->
 <attribute name="marshaller"
 isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
 <attribute name="unmarshaller"
 isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
 <attribute name="dataType" isParam="true">jms</attribute>
 <attribute name="socket.check_connection" isParam="true">false</attribute>
 <attribute name="timeout" isParam="true">0</attribute>
 <attribute name="serverBindAddress">${jboss.bind.address}</attribute>
 <attribute name="serverBindPort">4457</attribute>
 <attribute name="clientSocketClass"
 isParam="true">org.jboss.jms.client.remoting.ClientSocketWrapper</attribute>
 <attribute name="serverSocketClass"
 isParam="true">org.jboss.jms.server.remoting.ServerSocketWrapper</attribute>
 <attribute name="numberOfCallRetries" isParam="true">1</attribute>
 <attribute name="pingFrequency" isParam="true">214748364</attribute>
 <attribute name="pingWindowFactor" isParam="true">10</attribute>
 <attribute
 name="onewayThreadPool">org.jboss.jms.server.remoting.DirectThreadPool</attribute>

 <!-- Periodicity of client pings. Server window by default is twice this
 figure -->
 <attribute name="clientLeasePeriod" isParam="true">10000</attribute>

 <!-- Number of seconds to wait for a connection in the client pool to become
 free -->
 <attribute name="numberOfRetries" isParam="true">10</attribute>

 <!-- Max Number of connections in client pool. This should be significantly
 higher than
 the max number of sessions/consumers you expect -->

Configuring the remoting connector

43

 <attribute name="clientMaxPoolSize" isParam="true">200</attribute>

 <!-- Use these parameters to specify values for binding and connecting control
 connections to
 work with your firewall/NAT configuration
 <attribute name="secondaryBindPort">xyz</attribute>
 <attribute name="secondaryConnectPort">abc</attribute>
 -->

 </invoker>
 <handlers>
 <handler
 subsystem="JMS">org.jboss.jms.server.remoting.JMSServerInvocationHandler</handler>
 </handlers>
 </config>

Please note that some of the attributes should not be changed unless you know exactly what you are
doing. We will discuss the attributes that you may have a good reason to change:

• clientLeasePeriod - Clients periodically send heartbeats to the server to tell the server they are still
alive. If the server does not receive a heartbeat after a certain time it will close down the connection
and remove all resources on the server corresponding to the client's session. The clientLeasePeriod
determines the period of heartbeats. The server will (by default) close a client if it does not receive
a heartbeat in 2 * clientLeasePeriod ms. The actual factor gets automatically resized according to
system load. The value is in milliseconds. The default value is 10000 ms.

• numberOfRetries - This effectively corresponds to the number of seconds JBoss Remoting will
block on the client connection pool waiting for a connection to become free. If you have a very large
number of sessions concurrently accessing the server from a client and you are experiencing issues
due to not being able to obtain connections from the pool, you may want to consider increasing this
value.

• clientMaxPoolSize - JBoss Remoting maintains a client side pool of TCP connections on which to
service requests. If you have a very large number of sessions concurrently accessing the server
from a client and you are experiencing issues due to not being able to obtain connections from the
pool in a timely manner, you may want to consider increasing this value.

• secondaryBindPort - The bisocket transport uses control connections to pass control messages
between server and client. If you want to work behind a firewall you may want to specify a
particular value for this according to your firewall configuration. This is the address the secondary
ServerSocket binds to.

• secondaryConnectPort - This is the port the client uses to connect. You may want to specify this to
allow clients to work with NAT routers.

• maxPoolSize - This is the number of threads used on the server side to service requests.

By default JBoss Messaging binds to ${jboss.bind.address} which can be defined by: ./run.sh -c
<yourconfig> -b yourIP.

You can change remoting-bisocket-service.xml if you want for example use a different communication
port.

Chapter 3. Configuration

44

Warning

There is rarely a good reason to change values in the the bisocket or sslbisocket connector
configuration apart from clientLeasePeriod, clientMaxPoolSize, maxRetries, numberOfRetries,
secondaryBindPort or secondaryConnectPort. Changing them can cause JBoss Messaging to
stop functioning correctly.

3.13. ServiceBindingManager
If you are using the JBoss AS ServiceBindingManager to provide different servers with different port
ranges, then you must make sure that the JBoss Messaging remoting configuration specified in the
JBoss Messaging section of the ServiceBindingManager xml file exactly matches that in remoting-
bisocket-service.xml.

If you are using a newer version of JBM in an older version of JBAS then the example bindings in
the AS distribution may well be out of date. It is therefore imperative that the relevant sections are
overwritten with the remoting configuration from the JBM distribution.

See the chapter on installation for a description of how to set-up the service binding manager for
JBoss Messaging

3.14. Message Driven Beans
A message-driven bean is an enterprise bean that allows J2EE applications to process messages
asynchronously. It acts as a JMS message listener, which is similar to an event listener except that
it receives messages instead of events. The messages may be sent by any J2EE component--an
application client, another enterprise bean, or a Web component--or by a JMS application or system
that does not use J2EE technology. This definition is from http://java.sun.com/j2ee/tutorial/1_3-fcs/
doc/EJBConcepts5.html , and you can read more about message driven beans (MDB) from there.

You can specify MDBs in a deployment descriptor or using annotations.

Using a descriptor

<enterprise-beans>
 <message-driven>
 <ejb-name>MDBExample</ejb-name>
 <destination-jndi-name>queue/@QUEUE_NAME@</destination-jndi-name>
 </message-driven>
</enterprise-beans>
<enterprise-beans>
 <message-driven>
 <ejb-name>MDBExample</ejb-name>
 <destination-jndi-name>queue/@QUEUE_NAME@</destination-jndi-name>
 </message-driven>
</enterprise-beans>

Using an annotation

@MessageDriven(mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {
 @Resource
 private MessageDrivenContext mdc;

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts5.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts5.html

Message Driven Beans

45

 ...
@MessageDriven(mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {
 @Resource
 private MessageDrivenContext mdc;

You configure MDBs using properties. These properties are divided into ones specified by the JCA
specification, and those available as JBoss extensions.

Table 3.1. Properties provided by the JCA specification

Name Type Remarks Mandatory?Default
value

destination java.lang.String The jndi name of the Queue or Topic Yes none

destinationType java.lang.String The type of destination valid values are
javax.jms.Queue or javax.jms.Topic

No none

messageSelector java.lang.String The message selector of the subscription No none

acknowledgeMode int The type of acknowledgement when
not using transacted jms - valid
values AUTO_ACKNOWLEDGE or
DUPS_OK_ACKNOWLEDGE

No AUTO_ACKNOWLEDGE

clientID java.lang.String The client id of the connection No

subscriptionDurabilityString Whether topic subscriptions are durable.
Valid values are Durable or NonDurable

No NonDurable

subscriptionName String The subsription name of the topic
subscription

No none

Table 3.2. Properties provided as JBoss extensions

Name Type Remarks Mandatory?Default
value

isTopic boolean Sets the destinationType No false

providerAdapterJNDIjava.lang.String The jndi name of the jms provider No java:/
DefaultJMSProvider

user java.lang.String The user id used to connect to the jms
server

No none

pass java.lang.String The password of the user No none

maxMessages int Read this number of messages before
delivering messages to the mdb. Each
message is delivered individually on the
same thread in an attempt to avoid context
excessive context switching

No 1

minSession int The minimum number of jms sessions
that are available to concurrently deliver
messages to this mdb

No 1

maxSession int The maximum number of jms sessions
that are available to concurrently deliver
messages to this mdb

No 15

reconnectInterval long The length of time in seconds between
attempts to (re-)connect to the jms provider

No 10
seconds

Chapter 3. Configuration

46

Name Type Remarks Mandatory?Default
value

keepAlive long The length of time in milliseconds that
sessions over the minimum are kept alive

No 60
seconds

sessionTransacted boolean Whether the sessions are transacted No true

useDLQ boolean Whether to use a DLQ handler No true

dLQJNDIName java.lang.String The JNDI name of the DLQ No queue/
DLQ

dLQHandler java.lang.String The
org.jboss.resource.adapter.jms.inflow.DLQHandler
implementation class name

No org.jboss.resource.adapter
\

.jms.inflow.dlq.GenericDLQHandler

dLQUser java.lang.String The user id used to make the dlq
connection to the jms server

No none

dLQPassword java.lang.String The password of the dLQUser No none

dLQClientID java.lang.String The client id of the dlq connection No none

dLQMaxResent int The maximum number of times a message
is redelivered before it is sent to the DLQ

No 5

redeliverUnspecifiedboolean Whether to attempt to redeliver a message
in an unspecified transaction context

No true

transactionTimeout int Time in seconds for the transaction timeout No Default
is the
timeout
set for
the
resource
manager

DeliveryActive boolean Whether the MDB should make the
subscription at initial deployment or
wait for start() or stopDelivery() on the
corresponding MBean. You can set this to
false if you want to prevent messages from
being delivered to the MDB (which is still
starting) during server startup

No true

Chapter 4.

47

JBoss Messaging Clustering Notes

4.1. Unique server peer id
JBoss Messaging clustering should work out of the box in most cases with no configuration changes. It
is however crucial that every node is assigned a unique server id, as specified in the installation guide.

Every node deployed must have a unique id, including those in a particular LAN cluster, and also
those only linked by mesage bridges.

4.2. Clustered destinations
JBoss Messaging clusters JMS queues and topics transparently across the cluster. Messages sent
to a distributed queue or topic on one node are consumable on other nodes. To designate that a
particular destination is clustered simply set the clustered attribute in the destination deployment
descriptor to true.

JBoss Messaging balances messages between nodes, catering for faster or slower consumers to
efficiently balance processing load across the cluster.

If you do not want message redistribution between nodes, but still want to retain the other
characteristics of clustered destinations. You can do this by not specifying the attribute
ClusterPullConnectionFactoryName on the server peer

4.3. Clustered durable subs
JBoss Messaging durable subscriptions can also be clustered. This means multiple subscribers
can consume from the same durable subscription from different nodes of the cluster. A durable
subscription will be clustered if it's topic is clustered

4.4. Clustered temporary destinations
JBoss Messaging also supports clustered temporary topics and queues. All temporary topics and
queues will be clustered if the post office is clustered

4.5. Non clustered servers
If you don't want your nodes to participate in a cluster, or only have one non clustered server you can
set the clustered attribute on the postoffice to false

4.6. Message ordering in the cluster
If you wish to apply strict JMS ordering to messages, such that a particular JMS consumer consumes
messages in the same order as they were produced by a particular producer, you can set the
DefaultPreserveOrdering attribute in the server peer to true. By default this is false. The side effect of
setting this to true is that messages cannot be distributed as freely around the cluster

Chapter 4. JBoss Messaging Clustering Notes

48

Note

The redelivery scenario in order to guarantee message ordering is presently unsupported,
however it may be supported in future releases.

4.7. Idempotent operations
If the call to send a persistent message to a persistent destination returns successfully with no
exception, then you can be sure that the message was persisted. However if the call doesn't return
successfully e.g. if an exception is thrown, then you *can't be sure the message wasn't persisted*.
Since the failure might have occurred after persisting the message but before writing the response
to the caller. This is a common attribute of any RPC type call: You can't tell by the call not returning
that the call didn't actually succeed. Whether it's a web services call, an HTTP get request, an ejb
invocation the same applies. The trick is to code your application so your operations are *idempotent*
i.e. they can be repeated without getting the system into an inconsistent state. With a messaging
system you can do this on the application level, by checking for duplicate messages, and discarding
them if they arrive. Duplicate checking is a very powerful technique that can remove the need for XA
transactions in many cases.

In the clustered case. JBM is by default configured to detect duplicate automatically messages by
default

4.8. Clustered connection factories
If the supportsLoadBalancing attribute of the connection factory is set to true then consecutive
create connection attempts will round robin between available servers. The first node to try is chosen
randomly

If the supportsFailover attribute of the connection factory is set to true then automatic failover is
enabled. This will automatically failover from one server to another, transparently to the user, in case
of failure.

If automatic failover is not required or you wish to do manual failover (JBoss MQ style) this can be set
to false, and you can supply a standard JMS ExceptionListener on the connection which will be called
in case of connection failure. You would then need to manually close the connection, lookup a new
connection factory from HA JNDI and recreate the connection.

Chapter 5.

49

JBoss Messaging XA Recovery
Configuration
This section describes how to configure JBoss Transactions to handle XA recovery for JBoss
Messaging resources.

JBoss Transactions recovery manager can easily be configured to continually poll for and recover
JBoss Messaging XA resources, this provides an extremely high level of durability of transactions.

Enabling JBoss Transactions Recovery Manager to recover JBoss Messaging resources is a very
simple matter and involves adding a line to the file ${JBOSS_CONFIG}/conf/jbossjta-properties.xml

Here's an example section of a jbossjta-properties.xml file with the line added (note the whole file is
not shown)

 <properties depends="arjuna" name="jta">
 <!--
 Support subtransactions in the JTA layer?
 Default is NO.
 -->
 <property name="com.arjuna.ats.jta.supportSubtransactions" value="NO"/>
 <property name="com.arjuna.ats.jta.jtaTMImplementation"

 value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple"/>
 <property name="com.arjuna.ats.jta.jtaUTImplementation"
 value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple"/>

 <!--
 *** Add this line to enable recovery for JMS resources using DefaultJMSProvider

 -->
 <property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
 value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery;java:/
DefaultJMSProvider"/>

 </properties>

In the above example the recovery manager will attempt to recover JMS resources using the
JMSProviderLoader "DefaultJMSProvider"

DefaultJMSProvider is the default JMS provider loader that ships with JBoss AS and is defined in jms-
ds.xml (or hajndi-jms-ds.xml in a clustered configuration). If you want to recovery using a different
JMS provider loader - e.g. one corresponding to a remote JMS provider then just add another line and
instead of DefaultJMSProvider specify the name of the remote JMS provider as specified in it's MBean
configuration.

For each line you add, the name must be unique, so you could specify
"com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1",
"com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING2, ..." etc.

In actual fact, the recovery also should work with any JMS provider that implements recoverable
XAResources (i.e. it properly implements XAResource.recover()) , not just JBoss Messaging

Please note that to configure the recovery manager to recovery transactions from any node of the
cluster it will be necessary to specify a line in the configuration for every node of the cluster

50

Chapter 6.

51

JBoss Messaging Message Bridge
Configuration

6.1. Message bridge overview
JBoss Messaging includes a fully functional message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them to a
target queue or topic, typically on a different server.

The source and target servers do not have to be in the same cluster which makes bridging suitable
for reliably sending messages from one cluster to another, for instance across a WAN, and where the
connection may be unreliable.

A bridge is deployed inside a JBoss AS instance. The instance can be the same instance as either the
source or target server. Or could be on a third, separate JBoss AS instance.

A bridge is deployed as an MBean inside JBoss AS. Deployment is trivial - just drop the MBean
descriptor into the deploy directory of a JBoss configuration which contains JBoss Messaging.

An example in docs/example/bridge demonstrates a simple bridge being deployed in JBoss AS, and
moving messages from the source to the target destination

The bridge can also be used to bridge messages from other non JBoss Messaging JMS servers, as
long as they are JMS 1.1 compliant.

The bridge has built in resilience to failure so if the source or target server connection is lost, e.g. due
to network failure, the bridge will retry connecting to the source and/or target until they come back
online. When it comes back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages
matching that JMS selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be
configured to consume using a non durable or durable subscription

The bridge can be configured to bridge messages with one of three levels of quality of service, they
are:

• QOS_AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The
messages are consumed from the source and acknowledged before sending to the destination.
Therefore there is a possibility that if failure occurs between removing them from the source and
them arriving at the destination they could be lost. Hence delivery will occur at most once. This
mode is available for both persistent and non persistent messages.

• QOS_DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after
they have been successfully sent to the destination. Therefore there is a possibility that if failure
occurs after sending to the destination but before acknowledging them, they could be sent again
when the system recovers. I.e. the destination might receive duplicates after a failure. This mode is
available for both persistent and non persistent messages.

Chapter 6. JBoss Messaging Message Bridge Configuration

52

• QOS_ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once.
(Sometimes this mode is known as "exactly once"). If both the source and the destination are on the
same JBoss Messaging server instance then this can be achieved by sending and acknowledging
the messages in the same local transaction. If the source and destination are on different servers
this is achieved by enlisting the sending and consuming sessions in a JTA transaction. The JTA
transaction is controlled by JBoss Transactions JTA implementation which is a fully recovering
transaction manager, thus providing a very high degree of durability. If JTA is required then both
supplied connection factories need to be XAConnectionFactory implementations. This mode is only
available for persistent messages. This is likely to be the slowest mode since it requires logging on
both the transaction manager and resource side for recovery. If you require this level of QoS, please
be sure to enable XA recovery with JBoss Transactions.

Note

For a specific application it may possible to provide once and only once semantics without
using the QOS_ONCE_AND_ONLY_ONCE QoS level. This can be done by using the
QOS_DUPLICATES_OK mode and then checking for duplicates at the destination and
discarding them. This may be possible to implement on the application level by maintaining
a cache of received message ids on disk and comparing received messages to them. The
cache would only be valid for a certain period of time so this approach is not as watertight as
using QOS_ONCE_AND_ONLY_ONCE but may be a good choice depending on your specific
application.

6.2. Bridge deployment
A message bridge is easily deployed by dropping the MBean descriptor in the deploy directory of your
JBoss AS installation which contains JBoss Messaging

6.3. Bridge configuration
In this section we describe how to configure the message bridge

Here is an example of a message bridge configuration, with all the attributes shown. Note that some
are commented out for this configuration, since it is not appropriate to specify them all at once. Which
ones are specified depends on the configuration you want.

 <mbean code="org.jboss.jms.server.bridge.BridgeService"
 name="jboss.messaging:service=Bridge,name=TestBridge"
 xmbean-dd="xmdesc/Bridge-xmbean.xml">

 <!-- The JMS provider loader that is used to lookup the source destination -->
 <depends optional-attribute-name="SourceProviderLoader">
 jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

 <!-- The JMS provider loader that is used to lookup the target destination -->
 <depends optional-attribute-name="TargetProviderLoader">
 jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

 <!-- The JNDI lookup for the source destination -->

Bridge configuration

53

 <attribute name="SourceDestinationLookup">/queue/A</attribute>

 <!-- The JNDI lookup for the target destination -->
 <attribute name="TargetDestinationLookup">/queue/B</attribute>

 <!-- The username to use for the source connection
 <attribute name="SourceUsername">bob</attribute>
 -->

 <!-- The password to use for the source connection
 <attribute name="SourcePassword">cheesecake</attribute>
 -->

 <!-- The username to use for the target connection
 <attribute name="TargetUsername">mary</attribute>
 -->

 <!-- The password to use for the target connection
 <attribute name="TargetPassword">hotdog</attribute>
 -->

 <!-- Optional: The Quality Of Service mode to use, one of:
 QOS_AT_MOST_ONCE = 0;
 QOS_DUPLICATES_OK = 1;
 QOS_ONCE_AND_ONLY_ONCE = 2; -->
 <attribute name="QualityOfServiceMode">0</attribute>

 <!-- JMS selector to use for consuming messages from the source
 <attribute name="Selector">specify jms selector here</attribute>
 -->

 <!-- The maximum number of messages to consume from the source
 before sending to the target -->
 <attribute name="MaxBatchSize">5</attribute>

 <!-- The maximum time to wait (in ms) before sending a batch to the target
 even if MaxBatchSize is not exceeded.
 -1 means wait forever -->
 <attribute name="MaxBatchTime">-1</attribute>

 <!-- If consuming from a durable subscription this is the subscription name
 <attribute name="SubName">mysub</attribute>
 -->

 <!-- If consuming from a durable subscription this is the client ID to use
 <attribute name="ClientID">myClientID</attribute>
 -->

 <!-- The number of ms to wait between connection retrues in the event connections
 to source or target fail -->
 <attribute name="FailureRetryInterval">5000</attribute>

 <!-- The maximum number of connection retries to make in case of failure,
 before giving up -1 means try forever-->
 <attribute name="MaxRetries">-1</attribute>

 <!-- If true then the message id of the message before bridging will be added
 as a header to the message so it is available to the receiver. Can then be
 sent as correlation id to correlate in a distributed request-response -->
 <attribute name="AddMessageIDInHeader">false</attribute>

 </mbean>

We will now discuss each attribute

Chapter 6. JBoss Messaging Message Bridge Configuration

54

6.3.1. SourceProviderLoader
This is the object name of the JMSProviderLoader MBean that the bridge will use to lookup the source
connection factory and source destination.

By default JBoss AS ships with one JMSProviderLoader, deployed in the file jms-ds.xml - this
is the default local JMSProviderLoader. (This would be in hajndi-jms-ds.xml in a clustered
configuration)

If your source destination is on different servers or even correspond to a different, non JBoss JMS
provider, then you can deploy another JMSProviderLoader MBean instance which references the
remote JMS provider, and reference that from this attribute. The bridge would then use that remote
JMS provider to contact the source destination

Note that if you are using a remote non JBoss Messaging source or target and you wish once and
only once delivery then that remote JMS provider must provide a fully functional JMS XA resource
implementation that works remotely from the server - it is known that some non JBoss JMS providers
do not provide such a resource

6.3.2. TargetProviderLoader
This is the object name of the JMSProviderLoader MBean that the bridge will use to lookup the target
connection factory and target destination.

By default JBoss AS ships with one JMSProviderLoader, deployed in the file jms-ds.xml - this
is the default local JMSProviderLoader. (This would be in hajndi-jms-ds.xml in a clustered
configuration)

If your target destination is on a different server or even correspond to a different, non JBoss JMS
provider, then you can deploy another JMSProviderLoader MBean instance which references the
remote JMS provider, and reference that from this attribute. The bridge would then use that remote
JMS provider to contact the target destination

Note that if you are using a remote non JBoss Messaging source or target and you wish once and
only once delivery then that remote JMS provider must provide a fully functional JMS XA resource
implementation that works remotely from the server - it is known that some non JBoss JMS providers
do not provide such a resource

6.3.3. SourceDestinationLookup
This is the full JNDI lookup for the source destination using the SourceProviderLoader

An example would be /queue/mySourceQueue

6.3.4. TargetDestinationLookup
This is the full JNDI lookup for the target destination using the TargetProviderLoader

An example would be /topic/myTargetTopic

6.3.5. SourceUsername
This optional attribute is for when you need to specify the username for creating the source connection

6.3.6. SourcePassword
This optional attribute is for when you need to specify the password for creating the source connection

TargetUsername

55

6.3.7. TargetUsername
This optional attribute is for when you need to specify the username for creating the target connection

6.3.8. TargetPassword
This optional attribute is for when you need to specify the password for creating the target connection

6.3.9. QualityOfServiceMode
This integer represents the desired quality of service mode

Possible values are:

• QOS_AT_MOST_ONCE = 0

• QOS_DUPLICATES_OK = 1

• QOS_ONCE_AND_ONLY_ONCE = 2

Please see Section 6.1, “Message bridge overview” for an explanation of what these mean.

6.3.10. Selector
This optional attribute can contain a JMS selector expression used for consuming messages from the
source destination. Only messages that match the selector expression will be bridged from the source
to the target destination

Please note it is always more performant to apply selectors on source topic subscriptions to source
queue consumers.

The selector expression must follow the JMS selector syntax specified here: http://java.sun.com/
j2ee/1.4/docs/api/javax/jms/Message.html

6.3.11. MaxBatchSize
This attribute specifies the maximum number of messages to consume from the source destination
before sending them in a batch to the target destination. It's value must >= 1

6.3.12. MaxBatchTime
This attribute specifies the maximum number of milliseconds to wait before sending a batch to target,
even if the number of messages consumed has not reached MaxBatchSize. It's value must can be -1
to represent 'wait forever', or >=1 to specify an actual time.

6.3.13. SubName
If the source destination represents a topic, and you want to consume from the topic using a durable
subscription then this attribute represents the durable subscription name

6.3.14. ClientID
If the source destination represents a topic, and you want to consume from the topic using a durable
subscription then this attribute represents the the JMS client ID to use when creating/looking up the
durable subscription

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Chapter 6. JBoss Messaging Message Bridge Configuration

56

6.3.15. FailureRetryInterval
This represents the amount of time in ms to wait between trying to recreate connections to the source
or target servers when the bridge has detected they have failed

6.3.16. MaxRetries
This represents the number of times to attempt to recreate connections to the source or target servers
when the bridge has detected they have failed. The bridge will give up after trying this number of
times. -1 represents 'try forever'

Important - Closing Clients Issue on Nodes with MaxRetry set to -1

Clients that consume messages from a clustered destination can become unresponsive when
closed. This happens if the node has the value MaxRetry set to -1, and loses the connection to
the database. To avoid the problem, set the node parameter MaxRetry to a value greater than
-1. You can set the attribute value in the MBeans PersistenceManager, PostOffice, and
JMSUserManager in the file [database]-persistence-service.xml

6.3.17. AddMessageIDInHeader
If true, then the original message's message id will appended in the message sent to the destination
in the header JBossMessage.JBOSS_MESSAGING_BRIDGE_MESSAGE_ID_LIST. If the message
is bridged more than once each message-id will be appended. This enables a distributed request-
response pattern to be used

Chapter 7.

57

Enabling JBoss Messaging Ordering
Group
This section describes how to use the JBoss Messaging ordering group feature to achieve strict
message ordering.

Message ordering groups is the JBoss Messaging implementation of strict message ordering. When
the ordering group feature is enabled, message priorities no longer have an influence on the order
that the messages are delivered. Messages in a particular ordering group will be delivered in the exact
order that they arrive at the target queue (FIFO).

Ordering groups are identified by their string names and obey the following rules:

Rule One
The messages that form a part of an ordering group are delivered one at a time. The next message
will not be delivered until the delivery of a previous message is completed. Message delivery
completion is signaled by various means, depending on the acknowledge mode settings;

• The CLIENT_ACKNOWLEDGE mode results in the Message.acknowledge() method signaling the
completion state.

• The AUTO_ACKNOWLEDGE mode results in the completion of the message being identified by either
of the following:

• a successful return from one of the MessageConsumer.receive() methods, or

• a successful return from the onMessage() call of the MessageListener().

DUPS_OK_ACKNOWLEDGE Mode

Ordering Group cannot work with DUPS_OK_ACKNOWLEDGE mode unless the batch
acknowlegement size is limited to 1 (DupsOKBatchSize). The default DupsOKBatchSize
value is 2000 which results in the JMS broker buffering 2000 messages prior to sending them.
It is possible that messages will remain stuck in a queue when using StrictMessageOrdering
in DUPS_OK_ACKNOWLEDGE mode as the second message in a series will not be sent until the
previous message is acknowledged. Setting DupsOKBatchSize=1 ensures that the messages are
not buffered and acknowledgments are sent following each message.

Note

If the message consumer is closed, the message being processed at the time of its closure will
be deemed as completed. This is regardless of whether an *_ACKNOWLEDGE is called prior to the
closure of the consumer.

Chapter 7. Enabling JBoss Messaging Ordering Group

58

Rule Two
In the case of the transactional receipt of messages, the next message will not be delivered until
the transaction has been committed. This includes the acknowledgment of the receipt of the current
message. If the transaction is rolled back, the message will be canceled, sent back to the JMS server
and made available for the next delivery.

7.1. How to Enable Message Ordering Group
There are two ways to use message ordering group: through programming and through configuration.

• The Programming Way

To make use of JBoss Messaging's ordering group feature, one has to obtain a
JBossMessageProducer.

 JBossMessageProducer producer = (JBossMessageProducer)session.createProducer(queue);

JBossMessageProducer has two methods for starting/ending an ordering group.

public void enableOrderingGroup(String ogrpName) throws JMSException

Creating a ordering group with name ogrpName. Once called, the producer will send messages
on behave of the ordering group. If null parameter is given, the name of the ordering group will be
automatically generated. Calling this method more than once will always override the previous calls.

public void disableOrderingGroup() throws JMSException

Stop producing ordering group messages. Once called, the producer will stop sending out ordering
group messages and return to its normal behavior.

• The Configuration Way

Users can configure a JBoss Messaging connection factory to enable ordering group. Two new
attributes are added to the factory service configuration file.

EnableOrderingGroup -- set this property to true to enable the ordering group. Default is
 false; and
DefaultOrderingGroupName -- the default name for the message ordering group. If absent, the
 group
 name will be generated automatically.

Once configured to enable ordering group on a connection factory, all messages that are sent from
any producers created from this connection factory become ordering group messages.

Example:

 <mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
 name="jboss.messaging.connectionfactory:service=ConnectionFactory"
 xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">jboss.messaging:service=ServerPeer</
depends>

Notes and Limitations

59

 <depends optional-attribute-
name="Connector">jboss.messaging:service=Connector,transport=bisocket</depends>
 <depends>jboss.messaging:service=PostOffice</depends>

 <attribute name="JNDIBindings">
 <bindings>
 <binding>/MyConnectionFactory</binding>
 <binding>/XAConnectionFactory</binding>
 <binding>java:/MyConnectionFactory</binding>
 <binding>java:/XAConnectionFactory</binding>
 </bindings>
 </attribute>

 <!-- This are the two properties -->
 <attribute name="EnableOrderingGroup">true</attribute>
 <attribute name="DefaultOrderingGroupName">MyOrderingGroup</attribute>
 </mbean>

The good thing about this way is the user doesn't need to make any coding effort to get message
ordering functionality.

7.2. Notes and Limitations
• Ordering group doesn't work with topics. Users requiring order groups have to user queues.

• Ordering group shouldn't be used together with message selectors and scheduled delivery.

• If a message is 'dead' (goes to DLQ) or expired (goes to ExpiryQueue), this message is considered
completed and next message will be available for delivery.

• When using a ConnectionConsumer, ordering of the messages will be observed. However, it doesn't
control which session will be receiving the next message.

• In case of Distributed Queue, user should use HASingleton to make sure ordering group works
properly.

60

61

Appendix A. Revision History
Revision
4.3.10-1

Mon Jun 20 2011 Jared Morgan jmorgan@redhat.com

Initial brew.

Revision
4.3.9-100

Tue Nov 30 2010 Jared Morgan jmorgan@redhat.com

Incorporated changes for the Enterprise Application Platform 4.3.0CP09 release. For more
information, refer to the Documentation Resolved Issues in the Release Notes CP09.

mailto:jmorgan@redhat.com
mailto:jmorgan@redhat.com

62

	Messaging User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. JBoss Messaging Features
	1.2. Clustering Features
	1.3. Compatibility with JBossMQ
	1.4. Limitations of JBossMQ

	Chapter 2. Running the Examples
	Chapter 3. Configuration
	3.1. Configuring Remote JMS Clients
	3.2. System Properties used by JBoss Messaging
	3.2.1. support.bytesId
	3.2.2. retain.oldxabehaviour
	3.2.3. mapmessage.support.null.object

	3.3. Configuring the ServerPeer
	3.3.1. ServerPeer attributes
	3.3.2. We now discuss the MBean operations of the ServerPeer MBean.
	3.3.3. ListAllPreparedTransactions
	3.3.4. ListPreparedTransactions
	3.3.5. ShowMessageDetails
	3.3.6. CommitPreparedTransaction
	3.3.7. RollbackPreparedTransaction

	3.4. Changing the Database
	3.5. Configuring the Post office
	3.5.1. Post Office Attributes

	3.6. Configuring the Persistence Manager
	3.6.1. Important notes for Sybase and Microsoft SQL Server users
	3.6.2. PersistenceManager MBean Attributes

	3.7. Configuring the JMS user manager
	3.7.1. JMSUserManager MBean Attributes

	3.8. Configuring Destinations
	3.8.1. Pre-configured destinations

	3.9. Configuring queues
	3.9.1. Queue MBean Attributes
	3.9.2. DropOldMessageOnRedeploy
	3.9.3. We now discuss the MBean operations of the Queue MBean

	3.10. Configuring topics
	3.10.1. Topic MBean Attributes
	3.10.2. We now discuss the MBean operations of the Topic MBean

	3.11. Configuring Connection Factories
	3.11.1. We now discuss the MBean attributes of the ConnectionFactory MBean
	3.11.2. EnableOrderingGroup
	3.11.3. DefaultOrderingGroupName

	3.12. Configuring the remoting connector
	3.13. ServiceBindingManager
	3.14. Message Driven Beans

	Chapter 4. JBoss Messaging Clustering Notes
	4.1. Unique server peer id
	4.2. Clustered destinations
	4.3. Clustered durable subs
	4.4. Clustered temporary destinations
	4.5. Non clustered servers
	4.6. Message ordering in the cluster
	4.7. Idempotent operations
	4.8. Clustered connection factories

	Chapter 5. JBoss Messaging XA Recovery Configuration
	Chapter 6. JBoss Messaging Message Bridge Configuration
	6.1. Message bridge overview
	6.2. Bridge deployment
	6.3. Bridge configuration
	6.3.1. SourceProviderLoader
	6.3.2. TargetProviderLoader
	6.3.3. SourceDestinationLookup
	6.3.4. TargetDestinationLookup
	6.3.5. SourceUsername
	6.3.6. SourcePassword
	6.3.7. TargetUsername
	6.3.8. TargetPassword
	6.3.9. QualityOfServiceMode
	6.3.10. Selector
	6.3.11. MaxBatchSize
	6.3.12. MaxBatchTime
	6.3.13. SubName
	6.3.14. ClientID
	6.3.15. FailureRetryInterval
	6.3.16. MaxRetries
	6.3.17. AddMessageIDInHeader

	Chapter 7. Enabling JBoss Messaging Ordering Group
	7.1. How to Enable Message Ordering Group
	7.2. Notes and Limitations

	Appendix A. Revision History

