
Hibernate Tutorial

A JBoss Developer

Studio Hibernate Tutorial

by Ben Red Hat Clare

Draft Draft

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions ... vi

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. Introduction ... 1

1.1. Tutorial Overview .. 1

1.2. Intended Audience .. 1

2. Maven Integration .. 3

2.1. Prerequisites .. 3

2.2. Plugin Installation .. 4

2.2.1. Existing Installations and the Corresponding Plugin Versions 6

2.2.2. JBoss Developer Studio Welcome Screen ... 7

3. Maven Archetypes and Project Creation ... 9

3.1. Maven Project Creation ... 9

3.2. The Default POM .. 12

4. Console Application Development ... 15

4.1. The Maven Console .. 15

4.2. Project Configuration ... 15

4.2.1. Editing the Project Name and URL .. 16

4.2.2. Adding Dependencies ... 17

4.3. The Event Class ... 21

4.3.1. Creating the Source Folder ... 21

4.3.2. Creating the Class ... 21

4.3.3. Configuring Event as a JavaBean ... 22

4.3.4. The Identifier and Hibernate Persistence ... 23

4.3.5. Event Mapping File .. 23

4.4. Hibernate Configuration ... 23

4.4.1. The Configuration File .. 23

4.4.2. Session Factory View ... 23

4.4.3. Setting Hibernate Properties ... 23

4.5. The Session Factory Utitlity ... 23

4.5.1. Utility Classes .. 24

4.5.2. Packaging Classes ... 24

4.5.3. The Session Factory Utitlity Class ... 24

4.6. The Data Source .. 24

4.6.1. Configuring MySQL .. 24

4.6.2. Starting the Server ... 24

4.6.3. Testing .. 24

4.6.4. Configuring the Hibernate User ... 24

4.6.5. Shutting Down the Server ... 24

4.7. Working with Events ... 24

4.7.1. Event Manager Class ... 24

Hibernate Tutorial Draft

iv

4.7.2. Create and Store Events .. 24

4.7.3. Listing Events .. 24

4.8. The Employee Class ... 25

4.8.1. Mapping the Employee Class .. 25

4.8.2. Create and Store an Employee ... 25

5. Hibernate Associations and Collections .. 27

5.1. Unidirectional Associations .. 27

5.1.1. Employee/Event ... 27

5.1.2. Mapping the Association ... 27

5.1.3. Implementing the Association .. 27

5.2. Bi-Directional Associations ... 27

5.2.1. Defensive Link Management ... 27

5.2.2. Hibernate Bi-directional Associations ... 27

5.3. Value Type Collections .. 28

5.3.1. The Email Address Set ... 28

5.3.2. The Element Property .. 28

5.3.3. The Table Schema ... 28

5.3.4. Add an Address to an Employee ... 28

6. Web Application Development ... 29

6.1. Overview .. 29

6.2. Event Manager Servlet .. 29

6.2.1. Resolve Imports ... 29

6.2.2. Presentation ... 29

6.2.3. Processing ... 29

6.3. The Deployment Descriptor ... 29

7. Web Application Deployment .. 31

7.1. Setting Up Server Instances .. 31

7.2. Server Targeting ... 31

7.3. Deployment and Testing .. 31

7.3.1. EAP 4.3.0 .. 31

7.3.2. EAP 5.0.0 .. 31

A. Revision History .. 33

Index ... 35

Draft Draft

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced

bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a

key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key

combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog

box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface Draft

vi

Choose System → Preferences → Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications →

Accessories → Character Map from the main menu bar. Next, choose Search

→ Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Draft Notes and Warnings

vii

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring

a note should have no negative consequences, but you might miss out on a trick

that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

Preface Draft

viii

will apply. Ignoring a box labeled 'Important' won't cause data loss but may cause

irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

You should over ride this by creating your own local Feedback.xml file.

Chapter 1. Draft

1

Introduction

1.1. Tutorial Overview

This tutorial is an extension of a Hibernate tutorial written by Michael Gloegl. The original tutorial

has been modified to serve as an introduction to application development using JBoss Developer

Studio (JBDS), Maven and Hibernate. The topics covered include:

• JBDS/Maven integration;

• the development of command line applications;

• the development and deployment of web applications;

• database connectivity and table association mapping using hibernate;

• Integrated Development Environment (IDE) development techniques.

By the end of the tutorial the reader will have attained an awareness of the tools available for

the development of web applications, be introduced to some of the features that form a part of

the JBoss Enterprise Application Platform and will be in a position to confidently develop small

scale applications with the aid of JBDS. The resultant application is presented as a single page to

minimise the amount of code required to generate the application and to serve as a brief overview

of web application development using JBDS.

1.2. Intended Audience

This tutorial has been written with the beginning developer in mind, although developers with

experience in Eclipse and Maven may find it useful as a revision exercise and as a single point

of access to further reference material.

It would be beneficial for the reader to have a basic knowledge of Java, Java web development,

relational databases and Structured Query Language (SQL). Links to detailed information are

provided throughout the text and it is recommended that these are read while progressing through

the tutorial.

2

Chapter 2. Draft

3

Maven Integration
JBoss Developer Studio is configured with the required plugins to enable the development of a

variety of JBoss projects. Projects may also be built using a build tool such as Ant provided that

the required build tool is installed on the user's system.

Given the popularity of Maven amongst developers as a build tool and project management tool,

the following tutorial will be built using Maven and will use the Maven standard web application

archetype as a basis for development.

Maven Reference

A detailed Maven guide is available which serves as both a reference

and an introduction to Maven. Maven: The Definitive Guide is available for

download from http://www.sonatype.com/products/maven/documentation/book-

defguide and included as an M2Eclipse plugin option. It is recommended that

readers with limited exposure to Maven read this guide prior to proceeding with

this tutorial.

2.1. Prerequisites

This tutorial has been configured on the basis of the following installations:

• JBoss Developer Studio 3.0.0

• Java Developer Kit (JDK) 1.6.0_16

• Maven 2.2.1

• Subversion 1.6.4

• MySQL 5.1.41

Installation instructions for each product can be obtained from the following sources:

JBoss Developer Studio

http://www.redhat.com/docs/en-US/JBoss_Developer_Studio/

JDK

http://java.sun.com/javase/downloads/index.jsp

Maven

http://maven.apache.org/

http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.redhat.com/docs/en-US/JBoss_Developer_Studio/
http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/

Chapter 2. Maven Integration Draft

4

Subversion

http://subversion.tigris.org/

MySQL

http://dev.mysql.com/doc/

2.2. Plugin Installation

Maven support within JBoss Developer Studio requires the installation of additional plugins.

The plugin which provides the majority of the functionality is M2Eclipse, the reference book for

which recommends the installation of prerequisite plugins for use in a development environment.

These include:

• Mylyn which provides M2Eclipse with the ability to interact with a task-focused interface,

optimising the amount of information presented to the user and streamlining a multi-task

environment;

• Subclipse which provides M2Eclipse with the ability to interact with Subversion repositories.

M2Eclipse Reference

The M2Eclipse reference used as a source for this document is Developing with

Eclipse and Maven which can be obtained form http://www.sonatype.com/books/

m2eclipse-book/reference/

Plugin installation in JBoss Developer Studio can be achieved by adding the relevant remote

update site to the list of available software sites. Software sites can be added according to the

following procedure:

Procedure 2.1. Adding an Update Site

1. Access the Install dialog box

Select Help → Install New Software

2. Enter the site information

a. Click the Add button.

b. Enter a name for the plugin in the Name field.

c. Enter the URL of the update site in the Location field.

http://subversion.tigris.org/
http://dev.mysql.com/doc/
http://www.sonatype.com/books/m2eclipse-book/reference/
http://www.sonatype.com/books/m2eclipse-book/reference/

Draft Plugin Installation

5

3. Add the site

Once the entered details have been verified, click the OK button to begin the installation.

The plugin details are retrieved by JBoss Developer Studio and the available plugins will

be displayed in the main window of the Install dialog box including any Optional plugins.

4. Select the plugins

a. Choose the required plugins and any Optional plugins listed by clicking the relevant

checkboxes. Sub-items can be selected or deselected as required.

b. Click the Next button.

5. Review the plugins

a. The plugins to be installed will be displayed.

b. Choose the Next button to continue the installation or the Back button to revise the

selection.

6. Review the licenses

a. Read the license information presented on the screen and agree to the terms of the licence

by clicking on the I accept radio button.

b. Choose the Finish button to complete the installation or the Back button to revise the

selection.

7. Note any security warnings

a. Read the security warning. Click the Details button to obtain further details if required.

b. Once satisfied that the software is safe to install, click the OK button to accept the

installation.

8. Restart JBoss Developer Studio

When prompted, it is recommended to restart JBoss Developer Studio by clicking the Yes

button.

Unsigned Software

The installation of plugins often involves unsigned content for which the validity

of the software cannot be established. There are risks associated with the use of

unsigned software and it is recommended that users acquaint themselves with the

risks prior to finalising the installation.

Chapter 2. Maven Integration Draft

6

2.2.1. Existing Installations and the Corresponding Plugin

Versions

It is important to obtain the correct plugin version corresponding to the installed version of Eclipse,

upon which JBoss Developer Studio is based, and the installed versions of any supporting

software such as Subversion.

2.2.1.1. Eclipse Version

The Eclipse version can be obtained by the following procedure:

Procedure 2.2. Obtaining the Eclipse version

1. Access the Installation Details dialog

a. Select Help → About JBoss Developer Studio

b. Click the Installation Details button.

2. Obtain the feature details

a. Click the Features tab.

b. Under the Provider column, scroll to the eclipse.org entries.

c. Select the row corresponding to Eclipse Platform under the Feature Name column.

The Eclipse version is displayed under the Version column of the table or in the main display

area of the Installation Details dialog.

2.2.1.2. Supporting Software Versions

Determining the version number of the majority of applications such as Subversion or Maven can

be achieved by typing svn --version or mvn --version at a command prompt. Although not

required for determining plugin versions, the Java installation version can be obtained by typing

java -version.

2.2.1.3. Determining the Correct Update Sites

Once the correct version numbers have been established for Eclipse and Subversion, details

regarding the correct plugin version can be obtained from the relevant plugin project site. In this

instance, those sites are:

Mylyn

http://www.eclipse.org/mylyn/

http://www.eclipse.org/mylyn/

Draft JBoss Developer Studio Welcome Screen

7

Subclipse

http://subclipse.tigris.org/

M2Eclipse

http://m2eclipse.sonatype.org/

2.2.1.4. Resultant Update Site URLs

The procedure listed in Adding an Update Site would be completed for each required plugin.

Based on plugin installations for Subversion 1.6.4 and JBoss Developer Studio 3.0.0 - which

uses the Eclipse 3.5.1 IDE - the correct update site URLs to be entered in Step 2 of Adding an

Update Site are:

Mylyn

http://download.eclipse.org/tools/mylyn/update/e3.4

Subclipse

http://subclipse.tigris.org/update_1.6.x

M2Eclipse

http://m2eclipse.sonatype.org/update-dev or http://m2eclipse.sonatype.org/

update

Potential Plugin Errors

The update site used for M2Eclipse was the development build http://

m2eclipse.sonatype.org/update-dev due to errors returned when creating a Maven

webapp archetype project following the installation of release build plugins. The

release build update site, http://m2eclipse.sonatype.org/update/, may be suitable

once the development updates have been incorporated into the release build.

2.2.2. JBoss Developer Studio Welcome Screen

Following the initial installation of JBoss Developer Studio and the installation of some plugins,

the user will be presented with the Overview page of the Welcome screen page set. This page

provides links to information pertaining to the use of JBoss Developer Studio and additional web

resources. Closing the Welcome page or clicking on the Workbench icon takes the user to the

JBoss Developer Studio Workbench. Once closed, the Welcome screen can be accessed from

within the JBoss Developer Studio Workbench by selecting Help → Welcome.

Once the required plugins have been installed and JBoss Developer Studio has been restarted,

a new project can be created from the Workbench. Close the Welcome screen or click the

Workbench icon to begin the tutorial.

http://subclipse.tigris.org/
http://m2eclipse.sonatype.org/

8

Chapter 3. Draft

9

Maven Archetypes and Project

Creation
The Maven Archetype plugin can be used to create a default project as a foundation for a new

application. We will create a project based on the Maven simple web app archetype and add the

source folders required to develop the application.

3.1. Maven Project Creation

Once the Welcome screen has been closed, a new project can be created from the Workbench.

The available projects types will be dependant on the installed plugins. The procedure to create

a Maven project is as follows:

Procedure 3.1. Creating a Maven Project

1. Access the New Project dialog

Select File → New → Project.

2. Access the New Maven Project dialog

a. Select Maven from the New Project dialog.

b. Select Maven Project from the expanded list of project types.

3. Accept the default project name and location

From the New Maven Project dialog, click the Next button, accepting the defaults. Note that

the Creat a simple project checkbox is not selected as an archetype will be selected from

the next screen.

4. Select an Archetype

The user will be presented with a variety of project archetypes to select from based on the

Catalog selected. The Catalog defaults to Nexus Indexer in this instance.

Maven Archetypes and Indexer Catalogs

Refer to http://www.sonatype.com/products/maven/documentation/book-

defguide and http://www.sonatype.com/books/m2eclipse-book/reference/ for

details regarding Maven archetypes, the Nexus Indexer and the use of indexer

catalogs.

http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.sonatype.com/books/m2eclipse-book/reference/

Chapter 3. Maven Archetypes a... Draft

10

a. Navigate to the row corresponding to a GroupId of org.apache.maven.archetypes, an

ArtifactId of maven-archetype-webbapp and a corresponding Version of 1.0.

b. Click the Next button to procced.

Indexer Download

The display of the available archetypes may take some time as they are

generated by the downloaded Nexus Indexer file. The Updating indexes

progress will be displayed in the message bar at the bottom right of the display.

Once the download is complete, it may be necessary to click the Back button

followed by the Next button to reload the file.

5. Define the Maven coordinates

Maven identifies a particular project and its relation to other projects by its coordinates. Maven

coordinates are defined by the set comprised of the groupId, artifactId, packaging and version.

a. Enter the GroupId and ArtifactId as org.hibernate.tutorials and hibernate-tutorial

respectively.

b. Edit the Version number to 1.0.0-SNAPSHOT. The Package field will auto-complete based

on a combination of the GroupId and the ArtificatId.

c. Click the Next button to proceed.

Maven Coordinate Packaging

The Packaging which constitutes a part of the project coordinates will default to

war in this instance as a webapp archetype was selected. The auto-completed

Package refers to the GroupId-ArtifactId combination.

6. Review the project

Following a brief configuration period, a default project will be created according to the

structure depicted in Figure 3.1, “JBoss Developer Studio Maven Webapp Project ”

Draft Maven Project Creation

11

Figure 3.1. JBoss Developer Studio Maven Webapp Project

RE-READ AND CHECK THE FOLLOWING:

The points to note in regard to the project structure include:

Chapter 3. Maven Archetypes a... Draft

12

• The src/main/resources folders collectively form a package which will house the project

resources such as hibernate configuration files. Further packages will be created to accomodate

java source files including the main servlet.

• The webapp folder or deployment directory, accessible by clicking the src+main folders

respectively contains the WEB-INF and META-INF folders. Once the project is completed this

directory will be packaged into the war file which can then be deployed to the server. For web

applications, html and jsp files are placed in the webbapp folder of the application. Similarly,

style sheets (css files) would be dropped in the webbapp folder or in a subdirectory created

by the user.

• The WEB-INF directory contains the web.xml file and lib directory. The web.xml file specifies

the configuration and deployment information for the web components of the project. The

lib directory contains the additional jar libraries required by the application which are not

packaged with the targeted server.

• The META-INF directory contains the meta information describing the contents of any

packaged archives (jar or war files). The default content is the MANIFEST.MF file describing

files contained within the web archive (war file).

• Information about the project is contained within the Project Object Model POM. The pom.xml

file specifies the project coordinates, configures plugins and declares the project dependencies.

Maven executes against an effective pom.xml comprising the defined POM, any parent POM,

a super POM and any user-defined settings.

Later in the tutorial, the pom.xml file will be modified to specify further dependencies. The web.xml

will be modified to specify the web application url. A styles.css file will be produced to render

the styles for the application.

Command Line Project Generation

A new Maven project can be created by using the Maven Archetype plugin

and specifying the generate goal from the command line. This is achieved by

following the plugin:goal syntax. For example, a webapp can be created by

entering mvn archetype:generate at the command line and selecting archetype #18

when prompted. See http://www.sonatype.com/products/maven/documentation/

book-defguide for more details.

3.2. The Default POM

Example 3.1. The Default POM

<project xmlns="http://maven.apache.org/POM/4.0.0"

http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.sonatype.com/products/maven/documentation/book-defguide

Draft The Default POM

13

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.hibernate.tutorials</groupId>

 <artifactId>hibernate-tutorial</artifactId>

 <packaging>war</packaging>

 <version>1.0.0-SNAPSHOT</version>

 <name>hibernate-tutorial Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <finalName>hibernate-tutorial</finalName>

 </build>

</project>

The default pom.xml file declares the following elements:

<project>

this is the top-level element declared in all Maven pom.xml files;

<modelVersion>

the object model version used by the POM;

<groupid>, <artifactId>, <packaging>, <version>

the Maven coordinates used to identify the project;

<name>

the display name used for the project;

<url>

a url associating the project with a web site;

<dependencies>

the list of dependencies, which currently consists of a single dependency;

<build>

the build configuration, which currently declares the final name for the project. This can include

declarations to target a specific JDK for the Maven Compiler plugin or to instruct Maven to

continue with a build in the event of test failures.

Chapter 3. Maven Archetypes a... Draft

14

Junit

JUnit is a testing framework which provides functionality to test the classes that

comprise a project. It is used in Test Driven Development and can be used to

highlight redundencies resulting from project modifications. The JUnit web site is

located at http://www.junit.org/.

http://www.junit.org/

Chapter 4. Draft

15

Console Application Development
The application will initially be developed as a command line application with output displayed to

the Maven console to list the results of database actions and monitor errors. The main class will

then be modified to produce the EventManager servlet.

4.1. The Maven Console

Maven builds projects according to a "build lifecycle". The default Maven lifecycle supports

building a project from an initial project validation, through compilation, testing and ending in the

deployment of the final build. The user has the option to define a particular lifecycle which will

result in a build of the project up to the defined lifecycle phase. Each phase within the build lifecycle

may be associated with one or more plugin goals.

When run from a command prompt, information pertaining to each phase of the build is output

to the terminal. The information displayed includes downloads from the Maven repository and

compilation errors.

JBoss Developer Studio enables the user to display a number of views in the Views Panel. The

Console view displays output equivalent to that displayed to the terminal when executing Maven

from a command prompt. The Console can be displayed according to the following procedure:

Procedure 4.1. Displaying the Console View

1. Access the Show View dialog

Select Window → ShowView → Other

2. Select the Console View

a. Double-click the General folder

b. Click the Console icon.

c. Click the OK button.

The Console view will be displayed in the View Panel situated at the bottom of screen.

4.2. Project Configuration

Following a review of the project, the pom.xml file can be edited to include the required

dependencies. To edit, expand the project in the PackageExplorer panel as depicted in

Figure 3.1, “JBoss Developer Studio Maven Webapp Project ” and double click on the pom.xml

file. The user is presented with the interface as shown in Figure 4.1, “POM Overview Form”

Chapter 4. Console Applicatio... Draft

16

Figure 4.1. POM Overview Form

The user has the option to edit the pom.xml file using the Overview and Dependencies forms,

accessed by clicking on the appropriate tab, or by editing the pom.xml file directly. The pom.xml

tab can be accessed by clicking the >><num>+Show List icon.

The procedures presented in the following sections outline the steps involved in configuring the

project following the initial setup:

4.2.1. Editing the Project Name and URL

The name of the project and the web site that the project is associated with can be edited as in

Edit the Project Name and URL:

Procedure 4.2. Edit the Project Name and URL

1. Edit the details in the Overview form

a. Click on the Overview tab.

Draft Adding Dependencies

17

b. Edit the Name of the project to First Hibernate Tutorial

c. Edit the URL to http://hibernate.org

2. Save the changes

a. Once the values have been entered in the relevant textfield, click on the pom.xml tab.

Note that the file been has updated with the entered values.

b. Save the changes by clicking on the Save toolbar icon or typing Ctrl+S.

4.2.2. Adding Dependencies

Procedure 4.3. Add Dependencies

The pom.xml can be edited directly to specify the required dependencies. We will use the JBoss

Developer Studio Dependencies form to assist in obtaining a list of library versions.

M2Eclipse Dependencies Form

Depending on the M2Eclipse plugin installed, the interface presented to the user

may vary. This is indicated in step 1.b in the procedure that follows **.

1. Access the Add Dependency dialog

a. Click the Dependencies tab.

b. Click the Add button of the Dependencies form (**or the Add Dependency icon adjacent

to the Dependencies form header) displayed in Figure 4.2, “POM Dependency Form”.

The Select Dependencies dialog will open.

Figure 4.2. POM Dependency Form

2. Locate the required dependency

a. Enter org.hibernate in the Enter groupid, artifactid textfield, as shown in Figure 4.3,

“Select Dependencies”

b. The available Hibernate dependencies will be displayed. Click on the arrow adjacent to

the hibernate-core entry to expand the available options .

c. Click on the 3.3.2.GA-hibernate-core-3.3.2.GA.jar option.

Chapter 4. Console Applicatio... Draft

18

d. Click the OK button. The Dependency Details form of Figure 4.2, “POM Dependency

Form” is refreshed with the relevant dependency details.

Figure 4.3. Select Dependencies

Scope

The Scope dropdown list of Figure 4.3, “Select Dependencies” specifies

whether or not the dependency is available on all classpaths and packaged

with the project (compile) or whether the dependency is provided by the server

container or JDK (provided). We will use the maven default compile scope for

development of the command line application. Dependency scope is defined

within the dependency tag of the pom.xml file.

Draft Adding Dependencies

19

3. Save the changes

Save the project as in the Edit the Project Name and URL procedure above and inspect the

updated pom.xml file.

4. View the dependency graph

The hibernate-core-3.3.2.GA.jar is dependant on further library files. Click on the

Dependency Graph tab to display a graphic which traces the dependency hierarchy as

shown in Figure 4.4, “JBoss Developer Studio Maven Webapp Project ”

Chapter 4. Console Applicatio... Draft

20

Figure 4.4. JBoss Developer Studio Maven Webapp Project

These libraries are also listed under Maven Dependencies in the Package Explorer

Draft The Event Class

21

4.3. The Event Class

This section introduces the Event class. Employees will attend Events which, in the context of

this tutorial, could be training courses, inductions, workshops or meetings. The class will be set

up in JBoss Developer Studio and the available tools and forms will be used to configure the

class and associated mapping files.

4.3.1. Creating the Source Folder

Maven adopts a "convention over configuration" approach to projects in that source code,

resources, tests and distributable archives are located in pre-defined directories. This elimates

the need to configure the project and tell the compiler where to find and store the project files.

The maven Web-app project archetype is configured with a src/main/resources folder which

is used to store project resources such as the hibernate configuration file. Under the Maven

convention, source code (*.java) is located in src/main/java by default. Prior to creating the

Event.java class, create the source folder according to the following procedure:

Procedure 4.4. Creating a Source Folder

1. Access the New Source Folder dialog

a. Right click the project from the Package Explorer View.

b. Select New → Source Folder

2. Enter the Path

a. Enter src/main/java in the Folder textfield of the New Source Folder dialog.

b. Click the Finish button. The Package Explorer will display the src/main/java folder under

the hiberante-tutorial project name.

4.3.2. Creating the Class

Once the source folder is created, create the Events class:

Procedure 4.5. Creating a Class

1. Access the New Java Class dialog

a. Right click the source folder from the Package Explorer View.

Chapter 4. Console Applicatio... Draft

22

b. Select New → Class

2. Enter the Package and class Name

Java source files begin with a "package package_Name;" declaration identifying the source

file with a particular package. This is useful to avoid namespace clashes and to define the

scope of accessibility for classes within the same or different packages.

a. Enter org.hibernate.tutorial.domain in the Package textfield of the New Java Class

dialog.

b. Enter Event in the Name textfield of the New Java Class dialog.

3. Create and inspect the class

Click the Finish button. The org.hibernate.tutorial.domain package will be displayed in the

Package Explorer. The Event.java class will be displayed under this package and will be

opened in the Editor panel ready to be modified.

4.3.3. Configuring Event as a JavaBean

The Event.java class will be structured according to the JavaBean convention. This type of class

includes private member variables and public getters and setters which are used as an interface

to the private members. This results in the ability to maintain a consistent interface while permitting

changes in the underlying data structure.

Private Member Variables.

Procedure 4.6. Adding Private Member Variables

1. Enter the id, title and date

Enter the following in the Event.java class"

private Long id;

private String title;

private Date date;

2. Import Required Classes

Using an IDE such as JBoss Developer Studio provides the user with the ability to obtain

contextual help. Once the "private Date date;" member is declared, the IDE editor will

highlight this line as containing an error (x) and underline the affecting type declaration. In

this instance, the relevant Date class has not been declared in a import class_Name;

declaration.

Draft The Identifier and Hibernate Persistence

23

a. Position the mouse pointer over the underlined Date type declaration. A number of options

are presented to the user in the form of a list.

b. Click on Import 'Date' (java.util). The required import declaration is generated by the

editor. The Date class, which forms part of the java.util package, will be imported when

the project is compiled.

Member Variable Access - Set and Get.

• Generate the Getters and Setters

Right clicking on the editor panel reveals an extensive menu.

a. Select Source → Generate Getters and Setters

b. Expand the date, id and title options by clicking on the arrow next to each label.

c. The getMethod() and setMethod() accessor methods may be selected for each private

member variable. Select all six methods by clicking on the appropriate checkboxes.

d. The Access Modifier section of the dialog will default to public. Click the OK button to

generate the methods.

The Zero Argument Constructor.

4.3.4. The Identifier and Hibernate Persistence

Edit the setId() modifier Speel here about persistence.................

4.3.5. Event Mapping File

The Event Mapping File

4.4. Hibernate Configuration

4.4.1. The Configuration File

4.4.2. Session Factory View

4.4.3. Setting Hibernate Properties

4.5. The Session Factory Utitlity

Chapter 4. Console Applicatio... Draft

24

4.5.1. Utility Classes

4.5.2. Packaging Classes

4.5.3. The Session Factory Utitlity Class

4.6. The Data Source

4.6.1. Configuring MySQL

4.6.2. Starting the Server

4.6.3. Testing

4.6.4. Configuring the Hibernate User

4.6.5. Shutting Down the Server

4.7. Working with Events

4.7.1. Event Manager Class

4.7.2. Create and Store Events

4.7.2.1. Maven Run Configuration

4.7.2.2. Console Output

4.7.3. Listing Events

4.7.3.1. Maven Run Configuration

4.7.3.2. Console Output

Draft The Employee Class

25

4.8. The Employee Class

4.8.1. Mapping the Employee Class

4.8.2. Create and Store an Employee

26

Chapter 5. Draft

27

Hibernate Associations and

Collections
This is a test paragraph

5.1. Unidirectional Associations

This is a test paragraph in a section

5.1.1. Employee/Event

This is a test paragraph in a section

5.1.2. Mapping the Association

This is a test paragraph in a section

5.1.3. Implementing the Association

This is a test paragraph in Section 2

5.2. Bi-Directional Associations

5.2.1. Defensive Link Management

5.2.1.1. The Event Side

5.2.1.2. The Employee Side

5.2.1.3. Working the Link

5.2.2. Hibernate Bi-directional Associations

5.2.2.1. The Inverse Attribute

5.2.2.2. List Event Participants

5.2.2.3. List Employee Events

Chapter 5. Hibernate Associat... Draft

28

5.3. Value Type Collections

5.3.1. The Email Address Set

5.3.2. The Element Property

5.3.3. The Table Schema

5.3.4. Add an Address to an Employee

Chapter 6. Draft

29

Web Application Development
This is a test paragraph

6.1. Overview

This is a test paragraph in a section

6.2. Event Manager Servlet

This is a test paragraph in a section

6.2.1. Resolve Imports

This is a test paragraph in a section

6.2.2. Presentation

This is a test paragraph in a section

6.2.2.1. Styles

This is a test paragraph in a section

6.2.3. Processing

This is a test paragraph in a section

6.3. The Deployment Descriptor

30

Chapter 7. Draft

31

Web Application Deployment
This is a test paragraph

7.1. Setting Up Server Instances

This is a test paragraph in a section

7.2. Server Targeting

This is a test paragraph in a section

7.3. Deployment and Testing

This is a test paragraph in a section

7.3.1. EAP 4.3.0

This is a test paragraph in a section

7.3.2. EAP 5.0.0

This is a test paragraph in a section

32

Draft Draft

33

Appendix A. Revision History
Revision History

Revision 0 Mon Feb 01 2010 BenClare<bclare@redhat.com>

Generation of material relating to Maven configuration and initial project set up.

34

Draft Draft

35

Index
F
feedback

contact information for this manual, viii

36

	Hibernate Tutorial
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Tutorial Overview
	1.2. Intended Audience

	Chapter 2. Maven Integration
	2.1. Prerequisites
	2.2. Plugin Installation
	2.2.1. Existing Installations and the Corresponding Plugin Versions
	2.2.1.1. Eclipse Version
	2.2.1.2. Supporting Software Versions
	2.2.1.3. Determining the Correct Update Sites
	2.2.1.4. Resultant Update Site URLs

	2.2.2. JBoss Developer Studio Welcome Screen

	Chapter 3. Maven Archetypes and Project Creation
	3.1. Maven Project Creation
	3.2. The Default POM

	Chapter 4. Console Application Development
	4.1. The Maven Console
	4.2. Project Configuration
	4.2.1. Editing the Project Name and URL
	4.2.2. Adding Dependencies

	4.3. The Event Class
	4.3.1. Creating the Source Folder
	4.3.2. Creating the Class
	4.3.3. Configuring Event as a JavaBean
	4.3.4. The Identifier and Hibernate Persistence
	4.3.5. Event Mapping File

	4.4. Hibernate Configuration
	4.4.1. The Configuration File
	4.4.2. Session Factory View
	4.4.3. Setting Hibernate Properties

	4.5. The Session Factory Utitlity
	4.5.1. Utility Classes
	4.5.2. Packaging Classes
	4.5.3. The Session Factory Utitlity Class

	4.6. The Data Source
	4.6.1. Configuring MySQL
	4.6.2. Starting the Server
	4.6.3. Testing
	4.6.4. Configuring the Hibernate User
	4.6.5. Shutting Down the Server

	4.7. Working with Events
	4.7.1. Event Manager Class
	4.7.2. Create and Store Events
	4.7.2.1. Maven Run Configuration
	4.7.2.2. Console Output

	4.7.3. Listing Events
	4.7.3.1. Maven Run Configuration
	4.7.3.2. Console Output

	4.8. The Employee Class
	4.8.1. Mapping the Employee Class
	4.8.2. Create and Store an Employee

	Chapter 5. Hibernate Associations and Collections
	5.1. Unidirectional Associations
	5.1.1. Employee/Event
	5.1.2. Mapping the Association
	5.1.3. Implementing the Association

	5.2. Bi-Directional Associations
	5.2.1. Defensive Link Management
	5.2.1.1. The Event Side
	5.2.1.2. The Employee Side
	5.2.1.3. Working the Link

	5.2.2. Hibernate Bi-directional Associations
	5.2.2.1. The Inverse Attribute
	5.2.2.2. List Event Participants
	5.2.2.3. List Employee Events

	5.3. Value Type Collections
	5.3.1. The Email Address Set
	5.3.2. The Element Property
	5.3.3. The Table Schema
	5.3.4. Add an Address to an Employee

	Chapter 6. Web Application Development
	6.1. Overview
	6.2. Event Manager Servlet
	6.2.1. Resolve Imports
	6.2.2. Presentation
	6.2.2.1. Styles

	6.2.3. Processing

	6.3. The Deployment Descriptor

	Chapter 7. Web Application Deployment
	7.1. Setting Up Server Instances
	7.2. Server Targeting
	7.3. Deployment and Testing
	7.3.1. EAP 4.3.0
	7.3.2. EAP 5.0.0

	Appendix A. Revision History
	Index

