
Migrating JBoss Messaging 1.4 to HornetQ

This article is provided as a general guide for users to migrate their existing Jboss Messaging
applications in JBoss Application Server 4 and 5 to HornetQ 2.0.

General Steps

1. Shutdown client and server

JBoss Messaging uses a database to store its persistent data (unless a null persistence is used). You
don't need to shutdown the database for the purpose of migration. HornetQ doesn't need a Database at
all. It has its own high performance journal system instead.

2. Back up data

Before starting the migration, it is important to back up all the data used in your application and JBoss
Messaging server.

The following data are used by JBoss Messaging:

2.1. JBoss Messaging database tables

JBoss Messaging uses a few of database tables to store persistent data. Some of them keep some
internal state information of JBoss Messaging. Some others contains persistent messages and security
settings. Below is a list of tables that hold important data:

JBM_MSG_REF and JBM_MSG – The two tables are used to store persistent messages as well as their
states.

JBM_TX and JBM_TX_EX (since 1.4.0.SP3.CP10 and 1.4.6.GA.SP1) – The two tables are used to
keep transaction states.

JBM_USER and JBM_ROLE – The two tables are used to store users and roles information.

JBM_POSTOFFICE – It holds bindings information in the post office.

2.2 JBoss Messaging configuration files.

The location where most configuration files go is under {jboss-profile}/deploy/messaging in AS 5 or
{jboss-profile}/deploy/messaging/jboss-messaging.sar in AS 4. For example if your JBOSS_HOME
is /home/jboss/jboss-5.1.0.GA and your JBoss Messaging server profile is 'messaging', then the location
would be /home/jboss/jboss-5.1.0.GA/messaging/deploy/messaging.

Applications may choose other places to deploy some configuration files than this location.

Below is a list of JBoss Messaging configuration files that you need to migrate to HornetQ

1. Connection Factory service configuration files – these files contain JMS connection factories
deployed with JBoss Messaging server.

2. Destination service configuration files – these files contain JMS queues and topics deployed
with JBoss Messaging server.

3. Bridge service configuration files – these files contains bridge services deployed with JBoss
Messaging server.

Other configuration files such as messaging-service.xml and database persistence configuration file are
JBoss Messaging mbean configurations. They are not targets of the migration – HornetQ
implementations consists of only POJOs.

JBoss Messaging also rely on some other services to work. They are JBoss Remoting and Jgroups
services. Their configuration files contains settings specific to applications. As HornetQ has a different
transport layer and cluster design, you need to map the parameters in those configuration files to their
HornetQ equivalents (if any).

3. Application Code

If you are using standard JMS in your application, there is no need to change your source code.

If you are using JBoss Messaging proprietary features, such as ordering groups, you need to adapt them
to HornetQ equivalent features.

For convenience, the following table lists the JBoss Messaging JMS implementation classes and their
corresponding HornetQ equivalents.

JBoss Messaging JMS implementation classes HornetQ equivalents

org.jboss.jms.client.JBossConnectionFactory org.hornetq.jms.client.HornetQConnectionFactory

org.jboss.jms.client.JBossConnection org.hornetq.jms.client.HornetQConnection

org.jboss.jms.client.JBossSession org.hornetq.jms.client.HornetQSession

org.jboss.jms.client.JBossMessageProducer org.hornetq.jms.client.HornetQMessageProducer

org.jboss.jms.client.JBossMessageConsumer org.hornetq.jms.client.HornetQMessageConsumer
Note: Unless you have used JBM specific APIs, you don't need to explicitly cast your JMS objects to
its concrete implementations. Just use the standard JMS APIs whenever possible.

4. Installing HornetQ

To install HornetQ, use the scripts provided in HornetQ's binary distribution (under config/jboss-as-4
for AS 4 and config/jboss-as-5 for AS 5, please see HornetQ Quickstart Guide Chapter 5 for details).

The scripts automatically create two profiles (one non-clustered and clustered) with default
configurations. You need to create more if your application requires more nodes. To do this just copy
from the corresponding existing profiles.

5. Server Configuration Migration

As HornetQ's configuration are quite different from JBoss Messaging, it is not possible to have a one to
one mapping between the two. However some of the JBoss Messaging server attributes can find their

equivalents in HornetQ configuration. Below gives those attributes for your reference when doing the
migration. For more details please consult the user's manuals. (Unless explicitly indicated, attributes
mentioned in HornetQ server column are from hornetq-configuration.xml)

JBoss Messaging Server Attributes
(ServerPeer xmbean)

HornetQ Server Attributes

ServerPeerID N/A
HornetQ doesn't need a server ID specified.

DefaultQueueJNDIContext
DefaultTopicJNDIContext

N/A

PostOffice N/A

DefaultDLQ N/A
In stead of DLQ, HornetQ defines dead letter address
at core level, and there is no default dead letter address
for an address unless you specify one.

DefaultMaxDeliveryAttempts N/A.
In HornetQ, it's always 10.

DefaultExpiryQueue N/A
In stead of ExpiryQueue, HornetQ defines expiry
address at core level, and there is no default expiry
address for an address unless you specify one

DefaultRedeliveryDelay N/A
HornetQ's default redelivery delay is always 0,
meaning no delay.

MessageCounterSamplePeriod message-counter-sample-period

FailoverStartTimeout N/A

FailoverCompleteTimeout N/A

DefaultMessageCounterHistoryDayLimit N/A

ClusterPullConnectionFactory N/A

DefaultPreserveOrdering N/A

RecoverDeliveriesTimeout N/A

EnableMessageCounters Message-counter-enabled

SuckerPassword Cluster-password

SuckerConnectionRetryTimes bridges.reconnect- attempts

SuckerConnectionRetryInterval bridges.retry-interval

StrictTCK N/A

Destinations
MessageCounters
MessageStatistics

N/A.
These are part of HornetQ management functionalities.
Please refer to HornetQ user's manual for details.

SupportsFailover N/A

PersistenceManager N/A
HornetQ uses its built-in high-performance journal as
its persistent utility

JMSUserManager N/A

SecurityStore N/A
The security manager is configured in hornetq-
beans.xml or hornet-jboss-beans.xml (in JBoss AS).

6. Migrating JMS Administered Objects and Bridges

The ways used by HornetQ to create and deploy JMS connection factories, destinations and bridges are
different from those used by JBoss Messaging.

With JBoss Messaging, a JMS object (a connection factory or a JMS queue/topic) or a bridge is
configured as a Mbean service within a JBoss Application server, whereas with HornetQ it is
implemented as a POJO. Therefore, to migrate the configuration of such an object from JBoss
Messaging to HornetQ, you need to know which configuration parameter in JBM maps to which one in
HornetQ.

The following gives the mapping of those configurations between JBoss Messaging and HornetQ.

6.1 JMS Connection Factories

JBoss Messaging Connection Factories Attributes HornetQ JMS Connection Factories Attributes

ClientID connection-factory.client-id

JNDIBindings connection-factory.entries

PrefetchSize connection-factory.consumer-window-size

SlowConsumers N/A
equivalent to consumer-window-size = 0

StrictTck N/A

SendAcksAsync connection-factory.block-on-acknowledge

DefaultTempQueueFullSize
DefaultTempQueuePageSize
DefaultTempQueueDownCacheSize

N/A

DupsOKBatchSize connection-factory.dups-ok-batch-size

SupportsLoadBalancing N/A

SupportsFailover N/A

DisableRemotingChecks N/A

LoadBalancingFactory connection-factory.connection-load-balancing-policy-
class-name

Connector connection-factory.connectors

EnableOrderingGroup
DefaultOrderingGroupName

N/A

Note: Unless otherwise described, the HornetQ attributes in the table are in hornetq-jms.xml.

6.2 JMS Queues and Topics

6.2.1 Queue configurations

JBoss Messaging Queue Attributes HornetQ Attributes

Name queue.name
(hornetq-jms.xml)

JNDIName queue.entry
(hornetq-jms.xml)

DLQ address-settings.dead-letter-address

ExpiryQueue address-settings.expiry-address

RedeliveryDelay address- settings.redelivery-delay

MaxDeliveryAttempts address-settings.max- delivery-attempts

SecurityConfig security-settings

FullSize address-settings.max- size-bytes
Note: due to different paging mechanism in HornetQ,
the paging attributes do not have exactly the same
meaning as JBM's. Refer to user's manual for details.

PageSize address-settings.page- size-bytes
Note: due to different paging mechanism in HornetQ,
the paging attributes do not have exactly the same
meaning as JBM's. Refer to user's manual for details.

DownCacheSize N/A

CreatedProgrammatically
MessageCount
ScheduledMessageCount
MessageCounter
MessageCounterStatistics
ConsumerCount

Please refer to
org.hornetq.api.jms.management.JMSQueueControl
for retrieving those attributes.

DropOldMessageOnRedeploy N/A

MaxSize N/A

Clustered N/A

Note: Unless otherwise described, the HornetQ attributes in the table are in hornetq-configuration.xml.

6.2.2 Topic configurations

JBoss Messaging Queue Attributes HornetQ Attributes

Name topic.name
(hornetq-jms.xml)

JNDIName topic.entry
(hornetq-jms.xml)

DLQ address-settings.dead-letter-address

ExpiryQueue address-settings.expiry-address

RedeliveryDelay address- settings.redelivery-delay

MaxDeliveryAttempts address-settings.max-delivery-attempts

SecurityConfig security-settings

FullSize address-settings.max- size-bytes
Note: due to different paging mechanism in HornetQ,
the paging attributes do not have exactly the same
meaning as JBM's. Refer to user's manual for details.

PageSize address-settings.page- size-bytes
Note: due to different paging mechanism in HornetQ,
the paging attributes do not have exactly the same
meaning as JBM's. Refer to user's manual for details.

DownCacheSize N/A

CreatedProgrammatically
MessageCounterHistoryDayLimit
MessageCounters
AllMessageCount
DurableMessageCount
NonDurableMessageCount
AllSubscriptionsCount
DurableSubscriptionsCount
NonDurableSubscriptionsCount

Please refer to
org.hornetq.api.jms.management.TopicControl for
retrieving those attributes.

MaxSize N/A

Clustered N/A

DropOldMessageOnRedeploy N/A

Note: Unless otherwise described, the HornetQ attributes in the table are in hornetq-configuration.xml.

6.3 JMS Bridges

HornetQ's JMS Bridge has its attributes defined in its bean configuration files – as parameters of the
Bridge bean's constructor. Please refer to Chapter 33 of the HornetQ User's Manual for details.

JBoss Messaging Bridge Attributes HornetQ JMS Bridge bean constructor parameters

SourceProviderLoader SourceCFF

TargetProviderLoader TargetCFF

SourceDestinationLookup SourceDestinationFactory

TargetDestinationLookup TargetDestinationFactory

SourceUsername Source user name parameter

SourcePassword Source user password parameter

TargetUsername Target user name parameter

TargetPassword Target password parameter

QualityOfServiceMode Quality of Service parameter

Selector Selector parameter

MaxBatchSize Max batch size parameter

MaxBatchTime Max batch time parameter

SubName Subscription name parameter

ClientID Client ID parameter

FailureRetryInterval Failure retry interval parameter

MaxRetries Max retry times parameter

AddMessageIDInHeader Add Message ID in Header parameter

7. Other configurations in JBoss Messaging

There are two kinds of configurations for JBoss Messaging's dependent services, one for JBoss
Remoting and the other for Jgroups. The two services are independent projects and their configurations
belongs to their respective documentations.

HornetQ doesn't use them at all. It has its own pluggable transportation architecture and clustering
implementation. HornetQ currently uses Netty as its transport.

You need to consult corresponding documents for a complete description of the parameters in
Remoting and Jgroups in order to get a proper settings for HornetQ.

8. Migrating Existing Messages

After you have migrated all the JMS destinations on to HornetQ, you can
It is recommended that user use Bridge services to move existing messages in JBoss Messaging to
HornetQ.

For any prepared transactions, it is recommended that those transactions be finished with JBoss
Messaging.

9. Applications that uses management APIs

JBoss Messaging exposes the management API through mbean interfaces. HornetQ has different ways
to expose their management API. Please refer to HornetQ's user's manual (Chapter 30).

While JBoss Messaging management API's can be accessed by way of JMX, HornetQ has as many as
three different ways of doing so, i.e.

• Using JMX -- JMX is the standard way to manage Java applications
• Using the core API -- management operations are sent to HornetQ server using core

messages
• Using the JMS API -- management operations are sent to HornetQ server using JMS

messages

The three ways of management provided in HornetQ have same set of functionalities. That means a
functionality achieved by one way can also be achieved by another.

Below we listed the JBoss Messaging manageable objects and their HornetQ JMX counterparts. For

other management APIs such as core API and JMS messages please see HornetQ's user's manual.

JBoss Messaging management Objects (xmbeans) HornetQ management Objects

org.jboss.jms.server.ServerPeer org.hornetq.api.jms.management.JMSServerControl

org.jboss.jms.server.connectionfactory.ConnectionFactory org.hornetq.api.jms.management.ConnectionFactoryControl

org.jboss.jms.server.destination.QueueService org.hornetq.api.jms.management.JMSQueueControl

org.jboss.jms.server.destination.TopicService org.hornetq.api.jms.management.TopicControl

Note: Some of the JBoss Messaging mbeans have no peers in HornetQ. For example there is no
equivalent JDBCPersistenceManagerService in HornetQ because in HornetQ there is no longer a data
source needed as JBoss Messaging does.

10. Removing JBM and restart your application.

To remove JBM, simply delete the JBoss profile that containing the JBM.

After JBM has been removed, you can restart client and server.

